Project description:MicroRNAs from serum samples could detect pancreatic and biliary tract cancer patients more accurately than other traditional markers. Prospective miRNA markers for pancreatic/biliary tract cancer were selected in the training cohort. Using these miRNAs, discriminant analysis was performed, and the diagnostic accuracy, sensitivity and specificity were calculated in the test cohort.
Project description:Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to assess whether global gene expression measured in whole blood of healthy people allowed identification of prospective signatures of risk of active tuberculosis disease. RESULTS:Between July 6, 2005, and April 23, 2007, we enrolled 6363 from the ACS study and 4466 from independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identified in the ACS cohort. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% CI 63·2â68·9) and a specificity of 80·6% (79·2â82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6â64·3) and a specificity of 82·8% (76·7â86) in 12 months preceding tuberculosis. Interpretation: The whole blood tuberculosis risk signature prospectively identified people at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. In this prospective cohort study, we followed up healthy, South African adolescents aged 12â18 years from the adolescent cohort study (ACS) who were infected with M tuberculosis for 2 years. We collected blood samples from study participants every 6 months and monitored the adolescents for progression to tuberculosis disease. A prospective signature of risk was derived from whole blood RNA sequencing data by comparing participants who developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. Participants of the independent cohorts were household contacts of adults with active pulmonary tuberculosis disease.
Project description:Alzheimer’s disease (AD) is the most common subtype of dementia, followed by Vascular Dementia (VaD), and Dementia with Lewy Bodies (DLB). Recently, microRNAs (miRNAs) have received a lot of attention as the novel biomarkers for dementia. Here, using serum miRNA expression of 1,601 Japanese individuals, we investigated potential miRNA bio- markers and constructed risk prediction models, based on a supervised principal component analysis (PCA) logistic regression method, according to the subtype of dementia. The final risk prediction model achieved a high accuracy of 0.873 on a validation cohort in AD, when using 78 miRNAs: Accuracy = 0.836 with 86 miRNAs in VaD; Accuracy = 0.825 with 110 miRNAs in DLB. To our knowledge, this is the first report applying miRNA-based risk pre- diction models to a dementia prospective cohort. Our study demonstrates our models to be effective in prospective disease risk prediction; and with further improvement may contribute to practical clinical use in dementia.
Project description:Pancreatic cancer stem cells (CSCs) have been described as CD24+/CD44+/EpCAM+ or CD133+ cells. However, no study has determined the co-expression of all of these markers in pancreatic ductal adenocarcinoma. Similarly to other combinations of CSC markers, CD24+/ CD44+/EpCAM+/CD133+ phenotype might more accurately identify true pancreatic CSCs. Therefore, we performed a detailed co-expression analysis of CD24, CD44, EpCAM, and CD133 in 3 cell lines derived from primary pancreatic ductal adenocarcinomas (PDACs). Gene expression profiling was applied in order to further investigate the observed differences in proportion of cells that co-expressed CSC markers among the cell lines.
Project description:MicroRNAs from serum samples could detect pancreatic and biliary tract cancer patients more accurately than other traditional markers.
Project description:Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to assess whether global gene expression measured in whole blood of healthy people allowed identification of prospective signatures of risk of active tuberculosis disease. RESULTS:Between July 6, 2005, and April 23, 2007, we enrolled 6363 from the ACS study and 4466 from independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identified in the ACS cohort. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% CI 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation: The whole blood tuberculosis risk signature prospectively identified people at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease.
Project description:Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Interrogation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.
Project description:Pancreatic cancer is a rare but fatal form of cancer, the fourth highest in absolute mortality. The main reason for the high mortality is late detection, caused in part by an incomplete understanding of the initiating factors. Known risk factors include obesity, diet and type 2 diabetes, however the low incidence rate and interconnection of these factors confound the isolation of individual effects from patient data. Here we use epidemiological analysis of prospective human cohorts and parallel tracking of pancreatic cancer in mice to dissect the impacts of obesity, diet and diabetes on pancreatic cancer development, growth and lethality. Through longitudinal magnetic resonance imaging and multi-omics analysis in mice we found distinct effects of obesity and the protein, sugar and fat composition of diet, and no added impact of diabetes. Using epidemiological approaches in humans, we found that dietary plant fats reduced the risk of future pancreatic cancer development, while dietary sugars gave a genotype-dependent increased susceptibility to pancreatic cancer. An interaction between MAD2L1 and dietary glucose in pancreatic cancer pathogenesis was supported through both genetic epidemiology in human patients and molecular analysis of mouse models. These results demonstrate that both quantitative and qualitative dietary effects are at play in pancreatic cancer kinetics, in both mice and humans. Translation of these results to a clinical setting could aid identification of theat-risk population for screening and potential harness dietary modification as a therapeutic measure.
Project description:Type 1 diabetes (T1D) is a polygenic autoimmune disorder caused by autoreactive T cells that recognize pancreatic islet antigens and subsequently destroy insulin-producing β-cells. Pancreatic lymph nodes (PLN) are an essential site for the development of T1D, where tolerance to pancreatic self-antigens is first broken and the autoimmune responses are amplified. The purpose of this study was to identify candidate genes and pathways in the PLN that may contribute to the pathogenesis of T1D. Microarray analysis was performed on the PLN of human non-diabetic healthy controls (n=7) and at-risk autoantibody-positive subjects (n=13).