Project description:Halotolerant microorganisms are promising in bio-treatment of hypersaline industrial wastewater. Four halotolerant bacteria strains were isolated from wastewater treatment plant, of which a strain LZH-9 could grow in the presence of up to 14% (w/v) NaCl, and it removed 81.9% chemical oxygen demand (COD) at 96 h after optimization. Whole genome sequencing of Lysinibacillus pakistanensis LZH-9 and comparative genomic analysis revealed metabolic versatility of different species of Lysinibacillus, and abundant genes involved in xenobiotics biodegradation, resistance to toxic compound, and salinity were found in all tested species of Lysinibacillus, in which Horizontal Gene Transfer (HGT) contributed to the acquisition of many important properties of Lysinibacillus spp. such as toxic compound resistance and osmotic stress resistance as revealed by phylogenetic analyses. Besides, genome wide positive selection analyses revealed seven genes that contained adaptive mutations in Lysinibacillus spp., most of which were multifunctional. Further expression assessment with Codon Adaption Index (CAI) also reflected the high metabolic rate of L. pakistanensis to digest potential carbon or nitrogen sources in organic contaminants, which was closely linked with efficient COD removal ability of strain LZH-9. The high COD removal efficiency and halotolerance as well as genomic evidences suggested that L. pakistanensis LZH-9 was promising in treating hypersaline industrial wastewater.
Project description:Lysinibacillus varians GY32 is a filamentous bacteria that can generate electricity in microbial fuel cells. To find potential genes participating in the electron transfer to electrode of Lysinibacillus varians GY32, we compared the gene expression profiles of this bacteria with yeast extract as electron donor and two electron acceptors, i.e. oxygen and electrode in microbial fuel cells. The results showed that several cytochrome c genes might play specific roles in the extracellular electron transfer to electrode in this strain.
Project description:Lysinibacillus varians GY32 is a filamentous bacteria that can generate electricity in microbial fuel cells. To find potential genes participating in the electron transfer to electrode of Lysinibacillus varians GY32, we compared the gene expression profiles of this bacteria with acetate as electron donor and two electron acceptors, i.e. oxygen and electrode in microbial fuel cells. The results showed that several cytochrome c genes might play specific roles in the extracellular electron transfer to electrode in this strain.