Project description:Mucuna pruriens extract MPE pretreatment may have a direct protective effect on heart (other than immunological neutralization of the venom neurotoxin and phospholipase A2 by the anti-MPE antibodies) that renders the heart more resistant to the toxic action of the venom The direct protective effect probably involves functional changes to the cardiac tissue that enable the heart to resist the reduction of contractility and rate induced by the cobra venom.To explore the possibility of the direct action of MPE pretreatment on heart and to understand the molecular events involved in the protection of MPE pretreatment against the lethal action of Naja sputatrix venom, gene expression studies were carried out using microarray analysis.
Project description:The venom proteomes of three medically important Nigerian Elapidae snakes Naja haje, Naja katiensis and Naja nigricollis was studied using Hydrophilic Interaction Liquid Chromatography (HILIC) coupled with LC-MS/MS analysis. Peptides/Proteins were identified and characterised using the SEQUEST and X!Tandem algorithms incorporated on to the Scaffold proteome software version 4.10.0. The Nigerian elapid species studied displayed about 70% similarity in composition of their venoms.
Project description:This project mainly aims to characterize the complex toxic components present in the venom of Indian cobra (Naja naja) from the Western Ghats of India. Naja naja (NN) is native to the Indian subcontinent and is also found in Pakistan, Sri Lanka, Bangladesh and Southern Nepal. It is a highly venomous snake species of genus Naja of the Elapidae family. They are seen in wide habitats like plains, dense or open forests, rocky terrains, wetlands, agricultural lands, and outskirts of villages and even in highly populated urban areas. This species has been included in the ‘Big 4’ category of venomous snake species that accounts for majority of morbidity and mortality cases in India. Therefore, exploring the venom proteome of Naja naja is decisive to develop and design new antivenom and therapeutics against its envenomation. The venom proteome of Naja naja was characterized through various orthogonal separation strategies and identification strategies. In order to achieve this the crude venom components were resolved on a 12% SDS page. Also, the venom was decomplexed through reversed-phase HPLC followed by SDS analysis. Further each of the bands were subjected to in-gel digestion using trypsin, chymotrypsin and V8 proteases. All the digested peptides were then subjected to Q-TOF LC-MS/MS analysis.
Project description:Bites by the Indian spectacled cobra (Naja naja) are widely reported across the Indian subcontinent, with an associated high rate of mortality and morbidity. In western India (WI), the numbers of reported incidents of cobra envenomation are significantly higher than the other snake bites. In this study the venom proteome of WINn was deciphered for the first time using tandem mass spectroscopy analysis.
Project description:Venoms of Naja mossambica and Naja nigricincta nigricincta were analysed in order to identify the proteins. Samples were run on SDS-PAGE gel or analysed without digestion.