Project description:Based on the hypothesis that, enhancing the local concentration of donor oligos could increase the correction rates, we generated and tested novel CRISPR-Cas9 systems, in which the DNA repair template is covalently conjugated to Cas9 (RNPD system). To validate our results from the HEK293T reporter cells, we here tested our approach at different endogenous genomic loci and in different cell types. We first targeted the human beta globin (HBB) locus in the K562 cell line, and analyzed correction- and editing frequencies using next generation sequencing (NGS). Next we targeted the Rosa26 and proprotein convertase subtilisin/kexin type 9 (Pcsk9) locus in mouse embryonic stem cells (mESCs). Here, RNPD system was always compared to Cas9 SNAP-tag fusion proteins with uncoupled donor oligos. To also directly compare the engineered RNPD system to the classical CRISPR-Cas9 system, we performed experiments where we used wild-type Cas9 with the uncoupled donor oligos as a control. We therefore targeted the fluorescent reporter locus as well as the endogenous loci HBB, empty spiracles homeobox 1 (EMX1), and C-X-C chemokine receptor type 4 (CXCR4) in HEK293T cells. Finally, we performed the analysis of three computationally predicted off-target sites of the reporter locus.