Project description:This SuperSeries is composed of the SubSeries listed below. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
Project description:Oxygen deficient zones (ODZs) are major sites of net natural oceanic nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ of the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N-tracer experiments in combination with qPCR and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with mean 8.7 nmol L-1 d-1 but up to 118 ± 27.8 nmol L-1 d-1 just below the oxic-anoxic interface. Highest N2O production from AO of 0.16 ± 0.003 nmol L-1 d-1 occurred in the upper oxycline at O2 concentrations of 10 - 30 µmol L-1 which coincided with highest archaeal amoA transcripts/genes. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L-1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold suggesting increased N2O production during times of high particulate organic matter export. High N2O yields from ammonium oxidation of 2.1% were measured, but the overall contribution to N2O production stays an order of magnitude behind denitrification as an N2O source. Hence, these findings show that denitrification is the most important N2O production process in low oxygen conditions fueled by organic carbon supply which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
Project description:Oxygen deficient zones (ODZs) are major sites of net natural oceanic nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ of the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N-tracer experiments in combination with qPCR and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with mean 8.7 nmol L-1 d-1 but up to 118 ± 27.8 nmol L-1 d-1 just below the oxic-anoxic interface. Highest N2O production from AO of 0.16 ± 0.003 nmol L-1 d-1 occurred in the upper oxycline at O2 concentrations of 10 - 30 µmol L-1 which coincided with highest archaeal amoA transcripts/genes. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L-1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold suggesting increased N2O production during times of high particulate organic matter export. High N2O yields from ammonium oxidation of 2.1% were measured, but the overall contribution to N2O production stays an order of magnitude behind denitrification as an N2O source. Hence, these findings show that denitrification is the most important N2O production process in low oxygen conditions fueled by organic carbon supply which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation. [SUBMITTER_CITATION]: Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263-2287
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
Project description:Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated microbial community profiles as well as directly assayed nitrogen cycling genes that encode the enzymes responsible for overall nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms responsible for production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that elevated rates of nitrous oxide production and consumption are the result of changes in community structure, not simply changes in microbial activity.
Project description:This study was developed to test the hypothesis that the risk of colorectal cancer recurrence was similar in patients who were randomly assigned to 65% nitrous oxide or nitrogen during colorectal surgery.
Project description:This data was generated to identify the molecular pathways responsible for nitrous oxide synthesis by the green algae Chlamydomonas reinhardtii, when supplied with nitrite under aerobic conditions (oxia). RNA samples were collected at three time points, 15 min, 3 hours, and 24 hours after the start of the experiment. The control and treatment groups were grown under the same conditions, except treatment group was supplied with 10mM nitrite at time 0. Illumina TruSeq stranded RNA libraries were synthesised from the resulting RNA before sequencing on a HiSeq2500 (125bp). The resulting sequence run generated 241,151,809 paired-end 125bp reads, of which 200,946,839 remained following quality filtering. The short data was mapped to the published genome and read counts were generated with HT-Seq count with the default settings. The raw read count data was analysed by DESeq2 in order to identify genes differentially expressed during nitrous oxide production.