Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level.
Project description:From a long time ago, supplementation of fermented enzyme foods could have worked health effects on the body in the east nevertheless, only a few studies reported functions of them such as weight loss and metabolic syndrome. Thus, it is necessary to be verified whether supplementation of fermented enzyme foods can act in the body as a functional material. Therefore, we investigated the anti-obesity effects of fermented mixed grain with digestive enzymes (FMG) in high-fat diet induced mice. Sixty C57BL/6J mice were divided into six dietary groups and fed a normal diet (ND), a high-fat diet (HFD), Bacilus Coagulans group, steamed grain group, low-dose fermented mixed grain group(L-FMG), high-dose fermented mixed grain group (H-FMG) supplement for 12 weeks. After sacrificing, body weight and body fat mass in H-FMG group were significantly decreased compared to HFD group with a simultaneous decrease in plasma lipids. Also, H-FMG significantly decreased the blood glucose and improved the glucose tolerance compared to HFD group. Moreover high-dose FMG supplementation dramatically decreased the levels of inflammatory cytokines which secreted from adipocyte. Taken together, our findings suggest that H-FMG ameliorate high fat-diet induced obesity and its complication and could be used as a potential preventive agent for obesity.
Project description:Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, among which sourdough-derived products. Despite their limited metabolic capacity LAB contribute considerably to important characteristics of fermented foods, among which extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Thanks to the considerable amount of LAB genomic information that became available during the last years, transcriptome, and by extension meta-transcriptome studies, are the exquisite research approaches to study whole ecosystem gene expression into more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory, namely two wheat and two spelt fermentations with daily back-slopping. Hereto, the in-house developed functional gene LAB microarray was used, representing 406 genes that play a key role in sugar and nitrogen metabolism, functional metabolite production, stress responses and health and safety characteristics. The results reveal the activation of different key metabolic pathways, the ability to use different energy sources, and successful acid and oxidative stress responses. Also, a new algorithm was developed to compute a net expression profile for each of the represented genes, thereby exceeding the species level. The labeled aRNA of the sourdough fermentation samples was hybridized using a loop design, i.e. subsequent samples (e.g. 27 h and 51 h, 51 h and 75 h etc.) were hybridized together on the microarray and the loop was closed by hybridizing the last sample with the first.