Project description:Biomanufacturing remains financially uncompetitive with the lower cost but higher carbon emitting hydrocarbon based chemical industry. Novel chassis organisms may enable cost reductions with respect to traditional chassis such as E. coli and so open an economic rout to low emission biomanufacturing. Extremophile bacteria exemplify that potential. Salt tolerant halomonas species thrive in conditions inimical to other organisms. Their adoption would eliminate the cost of sterilising equipment. Novel chassis are inevitably poorly understood in comparison to established organisms. Rapid characterisation and community data sharing will facilitate organisms’ adoption for biomanufacturing. This paper describes baseline proteomics data set for Halomonas bluephagenesis TD01 under active development for biomanufactoring. The data record comprises a newly sequenced genome for the organism; evidence for expression of 1150 proteins (30% of the proteome) including baseline quantification of 1050 proteins (27% of the proteome) and a spectral library enabling re-use for targeted proteomics assays. Protein data is annotated with KEGG Orthology enabling rapid matching of quantitative data to pathways of interest to biomanufacturing.
Project description:Purpose: The goal is to study the regulatory role of ferric uptake regulator (Fur) during anaerobic respiration in Shewanella piezotolerans WP3 mRNA profiles of WP3 wild type (WP3) and the fur mutant (Fur) were generated by deep sequencing using Illumina HiSeq 2000.