Project description:The purpose of this study was to evaluate comprehensive and sequential gene expressions in Er;YAG laser ablated bone, bur-drilled bone, and non-treated control bone to clarify the biological responses for bone healing.
Project description:The purpose of this study was to evaluate comprehensive and sequential gene expressions in Er;YAG laser ablated bone, bur-drilled bone, and non-treated control bone to clarify the biological responses for bone healing.
Project description:The purpose of this study was to evaluate comprehensive and sequential gene expressions in Er;YAG laser ablated bone, bur-drilled bone, and non-treated control bone to clarify the biological responses for bone healing.
Project description:A number of reports showed that photo-bio-modulation by various lasers has favorable biological effects on cells. However, the effects of low-level Er:YAG laser irradiation on osteoblasts remain unclear. The purpose of this study was to evaluate the effects on proliferation and osteogenic differentiation of primary osteoblast-like cells by low-level Er:YAG laser irradiation. Osteoblast-like cells isolated from the calvariae of 3–5-day-old Wistar rats were irradiated by Er:YAG laser at energy fluences of 2.2, 3.3, or 4.3 J/cm2, respectively. After irradiation, cell surface temperature was measured and cell proliferation was evaluated by flow cytometry. Calcification was evaluated by measuring the Alizarin red S staining area after 7-day-culture with osteoinductive medium. Gene expressions in non-irradiated and laser-irradiated cells were evaluated by qPCR at 3, 6, and 12 hours after irradiation. Microarray analysis was performed to comprehensively evaluate gene expressions of non-irradiated cells and irradiated cells at 3.3 J/cm2 at 6 hours after irradiation. No pronounced increase of cell surface temperature was induced by low-level Er:YAG laser irradiation, and the Er:YAG laser irradiation did not affect osteoblast-like cell proliferation. Osteoblast-like cell calcification was significantly increased 7 days after Er:YAG laser irradiation at 3.3 J/cm2. Bglap expression was significantly increased in cells irradiated at 3.3 J/cm2 at 6 hours post-irradiation. Microarray analysis showed that irradiation at 3.3 J/cm2 caused up-regulation of inflammation-related genes and down-regulation of Wisp2. Gene set enrichment analysis also clarified enrichment of inflammation-related gene sets and Notch signaling pathway. In conclusion, Low-level Er:YAG laser irradiation enhanced calcification of primary osteoblast-like cells via enhanced Bglap expression and enriched Notch signaling pathway.
Project description:This study aimed to explore the effects of low-level Er:YAG laser irradiation on the proliferation of gingival fibroblasts without the photothermal effect.
Project description:WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emergning as key regulatory proteins with great promise as therapeutic agents for bone disorders. Until recently Sost and its paralog Sostdc1 have been described as growth factors with highly restricted expression in the adult where Sost was assumed 'osteocyte-' and Sostdc1 'kidney-' specific. Here we show that these two proteins emerged throgh ancestral genome duplication and their expression patterns have diverged to span complimentary domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1-/- mice lack any obvious limb and skeletal defects, Sost-/- mice recapitulate the hand defects described for sclerosteosis patients. However, elevated WNT signaling in Sost-/-; Sostdc1-/- mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and ultimately preaxial polydactyly. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost-/- and Sost-/-; Sostdc1-/- mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanisms and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling. Five arrays were analyzed, consisting of two total embryonic fore-limb RNA (experimental) and three total embryonic forelimb RNA (reference) samples at E11.5 DPC mouse (C57Bl6 strain). Embryos were not pooled to generate samples. Each time point has 3 to 5 biological replicates for limb bud samples, duplicates for whole embryos. Comparisons were made between limb bud samples and whole embryo at the same stage, fore-limb samples of different stages, hind-limb samples of different stages, and fore-limb samples compared to hind-limb samples at the same or the next stage.