Project description:We found that CTCF sites was acetylated at H3K27 and this modification was decreased by histone acetyltransferases and depletion of GATA-1.
Project description:ChIP-seq for H3K27 acetylation and RNA-seq were performed during spermatogenesis. We analyzed two representative stages of spermatogenesis: purified pachytene spermatocytes (PS) undergoing meiosis; and postmeiotic round spermatids (RS) from adult testes.
Project description:We ablated the expression of the Nuclear Receptor Corepressor 1 specifically in mice livers and rendered them hypothyroid. Then we performed H3K27 acetylation CHIP-Seq. We found decreased H3K27ac in the livers of hypothyroid wild type and NCoR1KO mice. Therefore, we concluded that the thyroid hormone receptor may recruit histone deacetilases independently of NCoR1.
Project description:Acetyl-Coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on ATP-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants, demonstrate the dynamic changes of H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.
Project description:Genome-wide profiling of H3K9/K14 Acetylation and H3K27 trimethylation at promoters in the human lung embryonic fibroblast cell line MRC5