Project description:Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicer and anti-icer runoff. This study investigated relations of heterotrophic biofilm prevalence and community composition to environmental conditions at stream sites upstream and downstream of Milwaukee Mitchell International Airport in Milwaukee, WI, during two deicing seasons (2009–2010 and 2010–2011). Modern genetic tools (such as microarray) have not previously been applied to biofilm communities in this type of setting. We used microarray results to characterize biofilm community composition as well as the response of the biofilm community to environmental factors (i.e., organic content (using chemical oxygen demand concentration) and temperature).
Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
Project description:Bacteriophage – host dynamics and interactions are important for microbial community composition and ecosystem function. Nonetheless, empirical evidence in engineered environment is scarce. Here, we examined phage and prokaryotic community composition of four anaerobic digestors in full-scale wastewater treatment plants (WWTPs) across China. Despite relatively stable process performance in biogas production, both phage and prokaryotic groups fluctuated monthly over a year of study period. Nonetheless, there were significant correlations in their α- and β-diversities between phage and prokaryotes. Phages explained 40.6% of total prokaryotic community composition, much higher than the explainable power by abiotic factors (14.5%). Consequently, phages were significantly (P<0.010) linked to parameters related to process performance including biogas production and volatile solid concentrations. Association network analyses showed that phage-prokaryote pairs were deeply rooted, and two network modules were exclusively comprised of phages, suggesting a possibility of co-infection. Those results collectively demonstrate phages as a major biotic factor in controlling bacterial composition. Therefore, phages may play a larger role in shaping prokaryotic dynamics and process performance of WWTPs than currently appreciated, enabling reliable prediction of microbial communities across time and space.
Project description:Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives.
Project description:Here we report a direct tRNA sequencing protocol and software to simultaneously examine the composition and biological activity of naturally occurring microbial communities. Our analysis of mouse gut microbiome with tRNA-seq and 16S ribosomal RNA gene amplicons revealed comparable microbial community structures, and additional physiological insights into the microbiome through tRNA abundance and modifications.
Project description:Origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition was further examined using the recently developed RumenBactArray.
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.
2010-11-13 | GSE25227 | GEO
Project description:fungal community composition
| PRJNA636109 | ENA
Project description:microbial community composition
| PRJNA518029 | ENA
Project description:Symbiodiniaceae community composition