Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Project description:Emerging and re-emerging microbial pathogens, together with their rapid evolution and adaptation against antibiotics, highlight the importance not only of screening for new antimicrobial agents, but also for deepening knowledge about existing antibiotics. Primycin is a large 36-membered non-polyene macrolide lactone exclusively produced by Saccharomonospora azurea. This study provides information about strain dependent primycin production ability in conjunction with the structural, functional and comparative genomic examinations. Comparison of high- and low-primycin producer strains, transcriptomic analysis identified a total of 686 differentially expressed genes (DEGs), classified into diverse Cluster of Orthologous Groups. Among them, genes related to fatty acid synthesis, self-resistance, regulation of secondary metabolism and agmatinase encoding gene responsible for catalyze conversion between guanidino/amino forms of primycin were discussed. Based on in silico data mining methods, we were able to identify DEGs whose altered expression provide a good starting point for the optimization of fermentation processes, in order to perform targeted strain improvement and rational drug design.