Project description:We used N-(1-naphthyl) phthalamic acid (NPA)-induced vascular overgrowth in Arabidopsis leaves to look for differential up-regulation of genes in NPA-treated tissues that may be involved in vascular differentiation. Arabidopsis thaliana Col-0 plants were grown for approximately 2 weeks on solid ATS medium (1) containing a final concentration of 10 um NPA (dissolved in DMSO) or an equivalent volume of DMSO (control). At this stage plants had approximately 6 rosette leaves. RNA was prepared from entire shoot tissues of control (DMSO) or NPA-treated plants.(1) Lincoln et al., 1990. Plant Cell 2: 1071-1080. 2 samples were used in this experiment.
Project description:We used N-(1-naphthyl) phthalamic acid (NPA)-induced vascular overgrowth in Arabidopsis leaves to look for differential up-regulation of genes in NPA-treated tissues that may be involved in vascular differentiation. Arabidopsis thaliana Col-0 plants were grown for approximately 2 weeks on solid ATS medium (1) containing a final concentration of 10 um NPA (dissolved in DMSO) or an equivalent volume of DMSO (control). At this stage plants had approximately 6 rosette leaves. RNA was prepared from entire shoot tissues of control (DMSO) or NPA-treated plants.(1) Lincoln et al., 1990. Plant Cell 2: 1071-1080.
Project description:Mutations in the Notch1 receptor and delta-like 3 (Dll3) ligand cause global disruptions in axial segmental patterning. Genetic interactions between members of the notch pathway have previously been shown to cause patterning defects not observed in single gene disruptions. We examined Dll3-Notch1 compound mouse mutants to screen for potential gene interactions. While mice heterozygous at either locus appeared normal, 30% of Dll3-Notch1 double heterozygous animals exhibited localized, stochastic segmental anomalies similar to human congenital vertebral defects. Unexpectedly, double heterozygous mice also displayed statistically significant decreases in mandibular height and elongated maxillary hard palate. Examination of somite-stage embryos and perinatal anatomy and histology did not reveal any organ defects, so we used microarray-based analysis of Dll3 and Notch1 mutant embryos to identify gene targets that may be involved in notch-regulated segmental or craniofacial development. Therefore, Dll3-Notch1 double heterozygous mice model human congenital scoliosis and craniofacial disorders. Keywords: genotype comparison
Project description:Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome we investigated 130 regions which we hypothesized as candidates for novel genomic disorders 1. We tested 290 patients with mental retardation by BAC array CGH, identifying sixteen pathogenic rearrangements, including four patients with de novo microdeletions of 17q21.31. Using oligonucleotide arrays we refined the breakpoints of this microdeletion, defining a 478 kb critical region containing six genes that were deleted in all four cases. The breakpoints of this deletion, and of four other pathogenic rearrangements in 1q21.1, 15q13, 15q24 and 17q12 were mapped to flanking segmental duplications, suggesting that these are also sites of recurrent rearrangement. In common with the 17q21.31 deletion, these breakpoint regions are also sites of copy number polymorphism in controls, indicating that these may be inherently unstable genomic regions. Keywords: BAC comparative genomic hybridization of individuals with mental retardation and congenital anomalies