Project description:Sweet cherry (Prunus avium L.) is a stone fruit widely consumed and appreciated for its organoleptic properties, as well as its nutraceutical potential. We here investigated the characteristics of six non-commercial Tuscan varieties of sweet cherry maintained at the Regional Germplasm Bank of the CNR-IBE in Follonica (Italy) and sampled at maturity over three consecutive years (2016-2017-2018). We adopted an approach merging genotyping and targeted gene expression profiling with metabolomics. To complement the data, a study of the soluble proteomes was also performed on two varieties showing the highest content of phenolics. The results obtained revealed that the highest differences were observed in the expression of genes involved in the phenylpropanoid pathway during the three years and among the varieties, while metabolomics identified the presence of flavanols and proanthocyanidins in highest abundance in the varieties Morellona and Crognola. Finally, proteomics on these two varieties showed differences in proteins involved in stress response, primary metabolism, and cell wall expansion. To the best of our knowledge, this is the first multi-pronged study focused on Tuscan sweet cherry varieties providing insights into the differential abundance of genes, proteins and metabolites.
Project description:Pseudomonas syringae pv. syringae 9644 (Pss9644) is a causal agent of bacterial cherry canker causing necrotic symptoms on leaves, fruits, gummosis and canker in woody tissues of sweet cherry (Prunus avium). To understand which virulent factor genes were expressed in vitro, Pss9644 was grown in rich media (King's B Broth) and minimum media (hrp-inducing minimum media). The latter mimics the in planta environment.
Project description:Bud dormancy is a crucial stage in perennial trees and allows survival over winter and optimal subsequent flowering and fruit production. Environmental conditions, and in particular temperature, have been shown to influence bud dormancy. Recent work highlighted some physiological and molecular events happening during bud dormancy in trees. However, we still lack a global understanding of transcriptional changes happening during bud dormancy. We conducted a fine tune temporal transcriptomic analysis of sweet cherry (Prunus avium L.) flower buds from bud organogenesis until the end of bud dormancy using next-generation sequencing. We observe that buds in organogenesis, paradormancy, endodormancy and ecodormancy are characterised by distinct transcriptional states, and associated with different pathways. We further identified that endodormancy can be separated in two phases based on its transcriptomic state: early and late endodormancy. We also found that transcriptional profiles of just 7 genes are enough to predict the main cherry tree flower buds dormancy stages. Our results indicate that transcriptional changes happening during dormancy are robust and conserved between different sweet cherry cultivars. Our work also sets the stage for the development of a fast and cost effective diagnostic tool to molecularly define the flower bud stage in cherry trees.
Project description:The experiment was performed in a commercial sweet cherry (cv. Tsolakeika, Prunus avium L.) orchard in North Greece (Edessa) during 2017 growing season. The orchard contained 10-years old trees, planted at 5x5 m spacing between rows and along the row, grafted onto Mahaleb cherry (Prunus mahaleb L.) rootstock, trained in open vase and subjected to standard cultural practices. Three foliar sprays (0.5% or 35 mM CaCl2) were performed at 15, 27 and 37 days after full blossom (DAFB). Cherry fruits (exocarp plus mesocarp tissues) were sampled in two developmental stages, namely at full red color (44 DAFB, S4 stage) and at commercial harvest (55 DAFB, S5 stage). Three biological replicates of 20-fruit sub-lots in control and Ca-treated fruits were frozen in liquid nitrogen, grinding in fine powder and stored at -80 ⁰C for proteomic processing.
Project description:Viromes of sour and sweet cherry trees in Hungarian germ line collections were surveyed using small RNA HTS as an unbiased method. RNA from leaf samples of different cultivars were purified and used to produce seven pools from which small RNA HTS libraries were prepared. The sequenced reads were analyzed using bioinformatic methods to revel the presence of viruses in the samples. Presence of the viruses were validated using RT-PCR.