Project description:We cultivated two halo-alkaliphilic cyanobacteria consortia in chemostats at pH 10.2-11.4. One consortium was dominated by Ca. Sodalinema alkaliphilum, the other by a species of Nodosilinea. These two cyanobacteria dominate natural communities in Canadian and Asian alkaline soda lakes. We show that increasing the pH decreased biomass yield. This decrease was caused, in part, by a dramatic increase in carbon transfer to heterotrophs. At pH 11.4, cyanobacterial growth became limited by bicarbonate uptake, which was mainly ATP-dependent. In parallel, the higher the pH, the more sensitive cyanobacteria became to light, resulting in photoinhibition and upregulation of DNA repair systems.
Project description:We have developed Halo-seq, an RNA proximity labeling method that allows the quantification of subcellular transcriptomes. We have demonstrated the efficacy of Halo-seq here by using it to quantify chromatin-proximal, nucleolar, and cytoplasmic transcriptomes. In Halo-seq, RNA molecules in close proximity to a spatially restricted protein are specifically marked and biotinylated, facilitating their separation from bulk cellular RNA and their quantification.