Project description:Seed coat colour is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds, such as seed dormancy, longevity, oil content, protein content and fibre content. In Brassica napus, inheritance of seed coat colour is related to maternal effects and pollen effects (xenia effects). In this research, we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus with pollen effect. Microcopy of transverse sections of the mature seed shows pigment is deposited only in the epidermal cells, the first cell layer of seed coat. By Illumina Hiseq 2000 sequencing technology, a total of 12 G clean data, 116x coverage of coding sequences of B. napus, was achieved from 26-day old brown and yellow seeds. It was assembled into 172,238 independent transcripts and 55,637 unigenes by Trinity. A total of 150 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcripted in seeds. However transcription of all the orthologs was independent of the embryonal control of seed coat colour. Of all the Trinity-assembled unigenes, only 55 genes were found to be differentially expressed between the brown seeds and yellow mutant. Among them 50 were up-regulated and 5 were down-regulated in the yellow seeds as compared to the brown counterpart. By KEGG classification, 14 metabolic pathways were enriched significantly. Of these, 5 pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were produced at higher levels in the embryo of yellow seeds as compared to brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the 26-day embryo of yellow seeds. Pigment indispensable substrate chalcone is synthesized from two molecules of Ala and one molecule of Phe. The correlation between accumulation of Ala and Phe and disappearance of pigment in the yellow seeded mutant indicate that embryonal control of seed coat colour is related with Phe and Ala metabolism in the embryo of B. napus.
Project description:We present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype. In order to compare the population of chalcone synthase related small RNAs, we sequenced 3 to 6 million small RNAs using the Illumina Genome Analyzer from the following four soybean cultivars and tissues with specific genotypes at the I locus: Richland immature seed coats (homozygous for the dominant I allele that specifies yellow seed coat); Williams immature seed coats (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum) Williams (i-i/i-i yellow) immature cotyledons (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum); Williams 55 immature seed coats (a Williams isogenic line homozygous for the recessive i allele that specifics pigmented seed coats. All seed coats and cotyledons were dissected from green stage immature seeds within the fresh weight range of 50-75 mg.
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.
Project description:Leaf colour variation is observed in several plants. We obtained two types of branches with yellow (H1) and variegated (H2) leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, proteomic analysis using label-free MS-based approach was performed using leaves from variants and normal branches (CKs).
Project description:Seeds are comprised of three majors parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed parts undergo distinct developmental programs during seed development. What methylation changes occurring in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of an early maturation stage seed: seed coat, embryonic cotyledons, and embryonic axis using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of an mid-maturation (B1) stage seed: seed coat (B1-SC), embryonic cotyledons (B1-COT), and embryonic axis (B1-AX).
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of two major parts of Arabidopsis mature green stage seeds, the seed coat and embryo, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from two parts of Arabidopsis mature green seeds: seed coat (SC) and embryo (EMB).
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of cotyledon stage seeds, the seed coat, embryonic cotyledons, and embryonic axis, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of soybean cotyledon stage seeds: seed coat (COT-SC), embryonic cotyledons (COT-COT), and embryonic axis (COT-AX).
Project description:Tissues were isolated from the globular seed using laser microdissection. At least two bioreplicates are included for each tissue. Tissues examined are : the embryo proper (EP), micropylar endosperm (MCE), peripheral endosperm (PEN), chalazal endosperm (CZE), chalazal proliferating tissue (CPT), chalazal seed coat (CZSC), inner seed coat (ISC), and outer seed coat (OSC).