Project description:Comparison to RNA-Seq showed different strengths and weaknesses for different regimes of expression strength. At sufficient read-depth, both platforms seemed comparable for gene-level expression profiling. Comparison to RNA-Seq showed comparable accuracy and precision with microarrays for ERCC spike-ins at medium to high expression levels. At low expression levels, the array showed signal attenuation but better precision, while RNA-Seq maintained accuracy albeit with highly inflated variance. In summary, both platforms can be meaningfully applied in a similar range of expression strength. Assessment of (precision, accuracy, reproducibility, mutual information, titration order consistency, and known mixing ratio recovery) by measurement of known-ratio mixtures of two RNA reference samples. The array probes 776 complex genes representative of the AceView gene model annotation, as well as 92 ERCC spike-in controls.
Project description:We have benchmarked the performance of cancer CNV calling by six most recent software tools on their detection accuracy, sensitivity, and reproducibility. We also explored the consistency of CNV calling across different orthogonal technologies, including optical mapping and microarrays. Using consensus results from six CNV callers and confirmation from three orthogonal methods, we established a high-confidence CNV call set for the reference sample.
Project description:Pharmacological and functional genomic screens play an essential role in the discovery and characterization of therapeutic targets and associated pharmacological inhibitors. Although these screens affect thousands of gene products, the typical readout is based on low-complexity rather than genome-wide assays. To address this limitation, we introduce Pooled Library Amplification for Transcriptome Expression (PLATE-Seq), a low-cost, genome-wide mRNA profiling methodology specifically designed to complement high-throughput screening (HTS) assays. Introduction of sample-specific barcodes during reverse transcription supports pooled library construction and low-depth sequencing that is 10 to 20-fold less expensive than conventional RNA-Seq. The use of network-based algorithms to infer protein activity from PLATE-Seq data results in comparable reproducibility to 30M read sequencing. Indeed, PLATE-Seq reproducibility compares favorably to other large-scale perturbational profiling studies such as the Connectivity Map (CMap) and Library of Integrated Network-based Cellular Signatures (LINCS).
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing.
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing. DNA copy number profiles of mouse squamous cell lung cancer (SCLC) were generated with ENCODER from whole exome sequencing data and compared to results from the NimbleGen array
Project description:Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. Current methods for detection of copy number aberrations (CNA) from whole-exome sequencing (WES) data are based on the read counts of the captured exons only. However, accurate CNA determination is complicated by the non-uniform read depth and uneven distribution of exons. Therefore, we developed ENCODER (ENhanced COpy number Detection from Exome Reads), which eludes these problems. By exploiting the ‘off-target’ sequence reads, it allows for creation of robust copy number profiles from WES. The accuracy of ENCODER compares to approaches specifically designed for copy number detection, and outperforms current exon-based WES methods, particularly in samples of low quality. DNA copy number profiles generated with a new tool, ENCODER, were compared to DNA copy number profiles from SNP6, NimbleGen and low-coverage Whole Genome Sequencing. DNA copy number profiles of melanoma PDX sample were generated with ENCODER from whole exome sequencing data and compared to results from the SNP6 platform.
Project description:Droplet-based single-cell sequencing techniques have provided unprecedented insight into cellular heterogeneities within tissues. However, these approaches only allow for the measurement of the distal parts of a transcript following short-read sequencing. Therefore, splicing and sequence diversity information is lost for the majority of the transcript. The application of long-read Nanopore sequencing to droplet-based methods is challenging because of the low base-calling accuracy currently associated with Nanopore sequencing. Although several approaches that use additional short-read sequencing to error-correct the barcode and UMI sequences have been developed, these techniques are limited by the requirement to sequence a library using both short- and long-read sequencing. Here we introduce a novel approach termed single-cell Barcode UMI Correction sequencing (scBUC-seq) to efficiently error-correct barcode and UMI oligonucleotide sequences synthesized by using blocks of dimeric nucleotides. The method can be applied to correct both short-read and long-read sequencing, thereby allowing users to recover more reads per cell that permits direct single-cell Nanopore sequencing for the first time. We illustrate our method by using species-mixing experiments to evaluate barcode assignment accuracy and multiple myeloma cell lines to evaluate differential isoform usage and Ewing’s sarcoma cells to demonstrate Ig fusion transcript analysis.