Project description:Background: Pantoea ananatis LMG 2665T synthesizes and utilizes acyl homoserine lactones (AHLs) for signaling. In this strain, short chain AHLs (C4 to C8) are produced by the EanI/R quorum sensing (QS) system that is involved in pathogenicity and biofilm formation. The complete set of genes regulated by the EanI/R system in P. ananatis LMG 2665T is still not fully known. In the present study, RNA-seq was used to analyze the transcriptome profiles controlled by the EanI/R system in this strain by comparing the wild type strain and its QS mutant 2665T ean∆I/R during lag and log stages. The RNA seq data was validated by RT qPCR. Results: The results showed that the EanI/R regulon in P. ananatis LMG 2665T comprised 144 genes, constituting 3.3% of the whole transcriptome under the experimental conditions in this study. The majority of genes regulated by the EanI/R system included genes for flagella assembly, bacterial chemotaxis, pyruvate metabolism, two component system, metabolic pathways, microbial metabolism and biosynthesis of secondary metabolites. Conclusions: This is the first study to identify the EanI/R QS regulon in P. ananatis LMG 2665T. Functional analysis of genes regulated the EanI/R system in LMG 2665T could help unveil genes that play a vital role in pathogenesis and survival strategies of this pathogen.
Project description:In this study transcriptomic data of three life history stages of Orciraptor agilis was generated: 1) Gliding cells in absence of food ('gliding'), 2) Cells attached to the cell wall of its algal prey during perforation ('fattacking'), 3) Cells after acquisition of the algal plastid material ('digesting'). Furthermore, RNA-seq of the algal prey Mougeotia sp. was also performed. A de novo transcriptome assembly of the algal reads was performed in order to identify and substract algal reads of the Orciraptor samples by mapping the Orciraptor reads to the algal transcriptome. After this filtering step the remaining Orciraptor reads from all libraries were pooled for a de novo transcriptome assembly of Orciraptor agilis. This transcriptome was the basis for a comparative transcriptomic study in which transcript expression was compared between the three life history stages.
Project description:RNAsequening revolutionized the bacterial gene expression analysis. The objective of this study was to identify the genes involved in metabolism of Inulin in Ligilactobacillus agilis. We have obtained a list of genes upregulated in Ligilactobacillus agilis when it is grown in 1% Inulin