Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Here we report metagenomic sequencing data in gut microbiota of autism spectrum disorders (ASD) compared with healthy volunteers (30 for ASD children and 30 for healthy controls, respectively). The genes changed in autistic subjects involved 1,312,364 analytes that compare to 1,335,835 analytes in healthy controls. The number of taxa in autistic subjects were significantly increased as compared to the healthy controls based on the phylum and genus level (P = 0.001). However, the number of species were significantly decreased in autistic subjects (P = 0.001).
Project description:This study applied peptidomics to investigate potential biomarkers for evaluating pork-meat freshness. Meat samples stored at -2, 4, 10, and 25 °C were collected at specific time points to evaluate meat freshness indicators (color, total viable count, pH, and total volatile basic nitrogen). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profile was analyzed, and substantial protein degradation (myosin heavy chain, paramyosin, troponin) was detected at the end of storage, regardless of the temperature. Peptidomics analysis was performed using a UHPLC-LTQ-Orbitrap mass spectrometer, and the potential peptide marker MVHMASKE was filtered via multivariate analysis and quantified by parallel reaction monitoring combined with external standard quantitation. In addition, the relationship between peptide content and change in meat freshness was verified using real-life samples and the content of MVHMASKE showed an obvious decline during storage, presenting a period of pork meat from fresh to spoilage. This study provides favorable evidences to evaluate pork meat freshness by mass spectrometry-based pep-tidomics.
Project description:We firstly compared the expression file of circRNAs in longissimus muscle (LM) between the Chinese indigenous Huainan (HN, the fat type line ) and the Western commercial Duroc×(Landrace×Yorkshire) (DLY, the thin type line) to identify the key circRNAs involved in the genetic basis of pork quality traits.
Project description:Previous studies have evaluated pork quality by omics methods. However, proteomics coupled with metabolomics to investigate pork freshness by using pork exudates has not been reported. This study determined the changes in profiles of peptides and metabolites in exudates from pork stored at different temperatures (25, 10, 4, and -2 ℃). Multivariate statistical analysis revealed similar changes in profiles in exudates collected from pork stored at -2 and 4 ℃, and additional changes following storage at higher temperatures. We identified peptides from 7 proteins and 30 metabolites differing in abundance between fresh and spoiled pork. Significant correlations be-tween pork quality and most of the peptides from these 7 proteins and 30 metabolites were found. The present study provides insight into changes in peptide and metabolite profiles of exudates from pork during storage at different temperatures and our analysis suggest that such changes can be used as markers for pork spoilage.