Project description:Porcine 60K BeadChip genotyping arrays (Illumina) are increasingly being applied in pig genomics to validate SNPs identified by re-sequencing or assembly-versus-assembly method. Here we report that more than 98% SNPs identified from the porcine 60K BeadChip genotyping array (Illumina) were consistent with the SNPs identified from the assembly-based method. This result demonstrates that whole-genome de novo assembly is a reliable approach to deriving accurate maps of SNPs.
Project description:We developed a software package STITCH (https://github.com/snijderlab/stitch) to perform template-based assembly of de novo peptide reads from antibody samples. As a test case we generated de novo peptide reads from protein G purified whole IgG from COVID-19 patients.
2022-07-21 | PXD031941 | Pride
Project description:De novo metagenome whole genome assembly
Project description:Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generated a de novo genome assembly and genome-wide transcript expression data for Kalanchoe fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identified signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops.