Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards. Six strains of three Leishmania species were hybridizated to 12 microarrays, each with four biological replicates (independent cultures). Supplementary file: Represents final results obtained after statistical analysis of all replicates.
Project description:Some T's in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (β-D-glucosyl-hydroxymethyluracil). In Leishmania about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA Polymerase II termination sites. Both this internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J is accompanied by massive read-through at RNA Polymerase II termination sites. The degree of read-through varies between transcription units, but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive read-through of transcriptional stops.
Project description:Some T's in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (?-D-glucosyl-hydroxymethyluracil). In Leishmania about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA Polymerase II termination sites. Both this internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J is accompanied by massive read-through at RNA Polymerase II termination sites. The degree of read-through varies between transcription units, but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive read-through of transcriptional stops. We determined the exact location of base J in the genome of Leishmania by high-throughput sequencing of J containing DNA fragments. Samples were enriched for J-containing fragments by two independent methods: ChIP using an anti-J DNA antibody or by binding to a the J-binding protein JBP1. We studied the effect of loss of J on transcription using WT, JBP2 knockout (30-37% of WT level J), and JBP2 knockout cells grown in BrdU containing medium (13-16% of WT level of J). We used 6 RNA-seq libraries (three samples & two replica each) containing processed RNA products (transspliced and poly-adenylated) and 3 small RNA libraries representing the entire transcriptome.
Project description:Base J is a modified DNA base that is enriched at RNA polymerase II termination sites. We previously identified a complex in Leishmania major and T. brucei composed of PNUTS, PP1, Wdr82 and a J-binding protein (JBP3). We show that deletion of PP1 in L. major leads to readthrough transcription and expression of downstream genes.