Project description:Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae)
Project description:Plant resistance to herbivores involves physical and chemical plant traits that prevent or diminish damage by herbivores, and hence may promote coevolutionary arm-races between interacting species. Although Datura stramonium's concentration of tropane alkaloids is under selection by leaf beetles, it is not known whether chemical defense reduces seed predation by the specialist weevil, Trichobaris soror, and if it is evolving by natural selection. We measured infestation by T. soror as well as the concentration of the plants' two main tropane alkaloids in 278 D. stramonium plants belonging to 31 populations in central Mexico. We assessed whether the seed predator exerted preferences on the levels of both alkaloids and whether they affect plant fitness. Results show great variation across populations in the concentration of scopolamine and atropine in both leaves and seeds of plants of D. stramonium, as well as in the intensity of infestation and the proportion of infested fruits by T. soror. The concentration of scopolamine in seeds and leaves are negatively associated across populations. We found that scopolamine concentration increases plant fitness. Our major finding was the detection of a positive relationship between the population average concentrations of scopolamine with the selection differentials of scopolamine. Such spatial variation in the direction and intensity of selection on scopolamine may represent a coevolutionary selective mosaic. Our results support the view that variation in the concentration of scopolamine among-populations of D. stramonium in central Mexico is being driven, in part, by selection exerted by T. soror, pointing an adaptive role of tropane alkaloids in this plant species.
Project description:Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations of Datura stramonium, we compared the degree of phenotypic differentiation (P ST) of leaf resistance traits (trichome density, atropine and scopolamine concentration) against neutral genetic differentiation (F ST) at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher than F ST across the range of trait heritability values. In contrast, genetic differentiation in trichome density was different from F ST only when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits in D. stramonium.
Project description:BackgroundCancer is a horrific disease relentlessly affecting human population round the globe. Genus Datura encompasses numerous species with reported medicinal uses. However, its potential as a source of natural anticancer agents is yet to be determined. Datura stramonium (DS) and Datura inoxia (DI) are the two species chosen for this study.MethodsTotal phenolic and flavonoid content (TPC and TFC) as well as antioxidant activity were assessed through colorimetric method. Polyphenolic quantification was done by RP-HPLC. Following extract standardization ethyl acetate leaf extracts of both species (DSL-EA and DIL-EA) were chosen for anticancer studies. In vitro cytotoxicity using various models including cancer cell lines was monitored. Following toxicity studies, benzene (0.2 ml) was used to induce leukemia in Sprague-Dawley rats. Extracts were orally administered to preventive (100 and 200 mg/kg) and treatment (200 mg/kg only) groups. The antileukemic potential of extracts was assessed through haematological, biochemical, endogenous antioxidants and histological parameters.ResultsSignificant TPC and TFC were estimated in DSL-EA and DIL-EA. RP-HPLC quantified (μg/mg extract) rutin (0.89 ± 0.03), gallic acid (0.35 ± 0.07), catechin (0.24 ± 0.02) and apigenin (0.29 ± 0.09) in DSL-EA while rutin (0.036 ± 0.004) and caffeic acid (0.27 ± 0.03) in DIL-EA. Both extracts exhibited significant brine shrimp cytotoxicity (LC50 < 12.5 μg/ml). DIL-EA exhibited greater cytotoxicity against PC-3, MDA-MB 231 and MCF-7 cell lines (IC50 < 3 μg/ml in each case) as well as higher protein kinase inhibitory action (MIC: 25 μg/disc) compared to DSL-EA. Leukemia induced in rats was affirmed by elevated serum levels of WBCs (7.78 ± 0.012 (× 103) /μl), bilirubin (7.56 ± 0.97 mg/dl), Thiobarbituric acid reactive substances (TBARs) (133.75 ± 2.61 nM/min/mg protein), decreased RBCs (4.33 ± 0.065 (× 106)/μl), platelets (344 ± 3.19 (× 103)/μl), total proteins (2.14 ± 0.11 g/dl), Glutathione S-transferases (GST) (81.01 ± 0.44 nM/min/ml), endogenous antioxidant enzymes levels and abnormal liver and kidney functionality in disease control rats. Both species revealed almost identical and significant (p < 0.05) alleviative effects in benzene induced leukemia.ConclusionComprehensive screening divulged the tremendous potential of selected species as potent source of natural anticancer agents in a variety of cancers particularly leukemia. Present study might provide useful finger prints in cancer research and mechanistic studies are prerequisite in logical hunt of this goal.
Project description:The lectin from Datura stramonium can be inhibited by oligomers of N-acetylglucosamine. This property was exploited to purify the lectin by affinity chromatography on Sepharosefetuin. The purified lectin is a glycoprotein in having subunits of 40 000 and 45 000 mol.wt.