Project description:MicroRNAs (miRNAs) are a type of small non-coding RNAs, which play important roles in plant growth, development and stress responses. Tea (Camellia sinensis) prepared from tea tree is the oldest and most popular nonalcoholic beverages in the world, and has large economic, medicinal and cultural significance. Nevertheless, there are a few studies on the miRNAs and their functions in Camellia sinensis. We sequenced 9 small RNA libraries and 9 RNA-Seq libraries from roots, leaves and flowers tissues. Through comprehensive computational analyses of 9 small RNA profiles, we identified 200 conserved miRNAs of which 138 have not been reported, and 56 novel miRNAs with 33 have not been reported. Nearly, two thousands genes have significantly different expression levels in tissues. In order to identify targets of miRNAs, we sequenced two degradome profiles from leaves and roots, respectively. Totally, more than 3,000 putative targets of conserved miRNAs were identified in both degradome profiles by using the SeqTar algorithm. These results clearly enhanced our understanding about small RNA guided gene regulations in Camellia sinensis.
Project description:MicroRNAs (miRNAs) are a type of small non-coding RNAs, which play important roles in plant growth, development and stress responses. Tea (Camellia sinensis) prepared from tea tree is the oldest and most popular nonalcoholic beverages in the world, and has large economic, medicinal and cultural significance. Nevertheless, there are a few studies on the miRNAs and their functions in Camellia sinensis. We sequenced 9 small RNA libraries and 9 RNA-Seq libraries from roots, leaves and flowers tissues. Through comprehensive computational analyses of 9 small RNA profiles, we identified 200 conserved miRNAs of which 138 have not been reported, and 56 novel miRNAs with 33 have not been reported. Nearly, two thousands genes have significantly different expression levels in tissues. In order to identify targets of miRNAs, we sequenced two degradome profiles from leaves and roots, respectively. Totally, more than 3,000 putative targets of conserved miRNAs were identified in both degradome profiles by using the SeqTar algorithm. These results clearly enhanced our understanding about small RNA guided gene regulations in Camellia sinensis.
Project description:MicroRNAs (miRNAs) are a type of small non-coding RNAs, which play important roles in plant growth, development and stress responses. Tea (Camellia sinensis) prepared from tea tree is the oldest and most popular nonalcoholic beverages in the world, and has large economic, medicinal and cultural significance. Nevertheless, there are a few studies on the miRNAs and their functions in Camellia sinensis. We sequenced 9 small RNA libraries and 9 RNA-Seq libraries from roots, leaves and flowers tissues. Through comprehensive computational analyses of 9 small RNA profiles, we identified 200 conserved miRNAs of which 138 have not been reported, and 56 novel miRNAs with 33 have not been reported. Nearly, two thousands genes have significantly different expression levels in tissues. In order to identify targets of miRNAs, we sequenced two degradome profiles from leaves and roots, respectively. Totally, more than 3,000 putative targets of conserved miRNAs were identified in both degradome profiles by using the SeqTar algorithm. These results clearly enhanced our understanding about small RNA guided gene regulations in Camellia sinensis.
Project description:Leaf colour variation is observed in several plants. We obtained two types of branches with yellow (H1) and variegated (H2) leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, proteomic analysis using label-free MS-based approach was performed using leaves from variants and normal branches (CKs).
Project description:Tea (Camellia sinensis (L.) O. Kuntze) is an important non-alcoholic commercial beverage crop. Tea tree is a perennial plant, and winter dormancy is its part of biological adaptation to environmental changes. We recently discovered a novel tea tree cultivar that can generate tender shoots in winter, but the regulatory mechanism of this ever-growing tender shoot development in winter is not clear. In this study, we conducted a proteomic analysis for identification of key genes and proteins differentially expressed between the winter and spring tender shoots, to explore the putative regulatory mechanisms and physiological basis of its ever-growing character during winter.
Project description:Tea plants (Camellia sinensis) present an excellent system to study evolution and diversification of specialized metabolites due to their abundance in classes, numbers and contents. A large number of tea cultivars have been cultivated throughout the world not only because of their adaption to different environments but of selection for specific flavors. The chemical and genetic basis for unique taste and aroma of different tea cultivars remains largely unknown, but is critical for guiding genetic breeding of new cultivars. Using transcriptomic data from 136 representative tea accessions in China, we obtain 925,854 high-quality single-nucleotide polymorphisms (SNPs) useful for marker-assisted breeding. Phylogenetic and population structure analyses separate sampled tea accessions into five major groups. Different major alleles are identified on 1183 SNP sites for the two major types of tea, C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS), reflecting fixation of these alleles after population divergence. Non-targeted metabolomic analyses detect 2,818 and 2,311 metabolic features in tea samples in positive and negative ionization modes, respectively, including 355 and 286 metabolites respectively that are differentially accumulated in different tea groups. Each phylogenetic group contains signature metabolites. In particular, CSA tea accessions are featured with high accumulation of diverse classes of flavonoid compounds, such as flavanols, flavonol mono-/di-glycosides and proanthocyanidin dimers. Comparisons of gene expression profiles of different tea groups identify hundreds of differentially expressed genes with some involved in the biosynthesis of characteristic tea metabolites, reflecting a combinational effect of genetic and environmental factors. Taken together, our study provides new insights into the phylogenetic relationships, molecular markers, metabolite compositions, and gene expression profiles of representative cultivated tea accessions in China, which are beneficial for targeted tea breeding and improvement.