Project description:The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored transcriptomic differences between cultured nasal and bronchial epithelial cells from people with CF. Comparison of air-liquid interface-differentiated epithelial cells from subjects with CF revealed distinct mucociliary differentiation states of nasal and bronchial cultures. Moreover, using RNA sequencing we identified cell type-specific signature transcription factors in differentiated nasal and bronchial epithelial cells.
Project description:We have compared gene expression in human nasal brushing cells from 19 cystic fibrosis (CF) patients and 19 healthy controls using a 5.2K cDNA microarray. Our aim is to identify new disease biomarkers for the Cystic Fibrosis Gene Therapy Consortium. These markers will be used to report more effectively on the response to the administration of gene therapy in vivo. Cystic Fibrosis is a recessive genetic disease caused by mutations in the cystic fibrosis conductance regulator (CFTR) gene which encodes a chloride ion channel. The most common mutation is the ∆F508 mutation, present on 70% of CF chromosomes in Caucasian populations. The disease affects many organs in the body such as the pancreas, liver, sweat glands, small intestine and reproductive tracts but is most commonly associated with progressive, inflammatory lung disease. The current average life expectancy of CF patients is 35 years. Gene therapy is being developed as a treatment for CF airway disease, however, means of measuring the efficiency and efficacy of gene therapy in vivo are lacking. This is mainly due to the difficulty in measuring the chloride conductance of CFTR in cells and tissues. Furthermore, clinical assays for measuring improvements in lung function are insensitive. Surrogate markers of inflammation and CFTR function will therefore be important for the effective assessment of gene therapy in vivo. We have analysed gene expression in human nasal epithelium as this is considered an accessible surrogate for the conducting airways where disease manifests in the majority of patients. Additionally, this tissue will be sampled in clinical trials.
Project description:This multi-center study will compare multi-target DNA and quantitative FIT stool-based testing to colonoscopy in individuals with Cystic Fibrosis (CF) undergoing colon cancer screening with colonoscopy. The primary endpoint is detection of any adenomas, including advanced adenomas and colorectal cancer (CRC).
Project description:Cystic fibrosis (CF) is one of the commonest lethal genetic diseases in which the role of microRNAs (miRNAs) has yet to be explored. We hypothesized that unique miRNA expression profiles exist in CF versus non-CF bronchial epithelial cells so the our aim was to investigate whether unique miRNA expression profiles exist in CF, particularly in CF bronchial epithelial cells and explore their effects on influencing signaling pathways. The expression of 667 miRNAs were measured in bronchial brushings from individuals with and without cystic fibrosis (CFn=5, non-CF n=5). The 5 CF patient samples have been normalised to the controls so we get a final normalised value for 5 samples only. There are 2 raw data files for samples and controls as there are two cards A and B ran for each sample, for a total of 4 raw data files available on the Series record.
Project description:The purpose of the study is to compare the transcriptomic profile of the airway epithelium generated from bronchial airway epithelial cells isolated from healthy donors (NCF) and patients with cystic fibrosis (CF). Cells were grown at the air-liquid interface for at least 2-months. CF is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Only patients homozygous for the F508del mutation of the CFTR gene were considered. The reconstituted airway epithelium was mechanically wounded and allowed to repair with time. We considered four steps: 1) intact, non-wounded (NW) epithelium; 2) 24h hours post-wounding (pW); 3) time at which the wound is closed (WC); 4) two days post-wound closure (pWC). We also mimicked infection by exposing the cells to Pseudominas aeruginosa flagelin for NW and WC conditions.
Project description:Cystic fibrosis (CF) is one of the commonest lethal genetic diseases in which the role of microRNAs (miRNAs) has yet to be explored. We hypothesized that unique miRNA expression profiles exist in CF versus non-CF bronchial epithelial cells so the our aim was to investigate whether unique miRNA expression profiles exist in CF, particularly in CF bronchial epithelial cells and explore their effects on influencing signaling pathways.