Project description:Grape volatiles include a great number of compounds, among which monoterpenes, alcohols,esters and carbonyls were found.Grape may be divided into aromatic and non-aromatic varieties. ‘Shine Muscat’ belongs to the aromatic cultivar. The most abundant free compounds detected in Muscat grape were linalool, geraniol, citronellol, nerol. Grapevine (Vitis vinifera L.) is an economically important and widely cultivated fruit crop. Grape quality is important for its market value and is largely decided by its taste and aroma.Gas-chromatograph mass-spectrometry (GC-MS) was performed to observe changes of the volatile compounds.
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar ‘Regent’, when compared to the susceptible cultivar ‘Trincadeira’, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera ‘Regent’ is induced after infection. This study provides the identification of several candidate genes that may be related to ‘Regent’ defense mechanisms, allowing a better understanding of this cultivar's resistance traits.
Project description:Grape berries undergo considerable physical and biochemical changes during the ripening process. Ripening is characterized by a number of changes, including the degradation of chlorophyll, an increase in berry deformability, a rapid increase in the level of hexoses in the berry vacuole, an increase in berry volume, the catabolism of organic acids, the development of skin colour, and the formation of compounds that influence flavour, aroma, and therefore, wine quality. The aim of this work is to identify differentially expressed genes during grape ripening by microarray and real-time PCR techniques. Using a custom array of new generation, we analysed the expression of 6000 grape genes from pre-veraison to full maturity, in Vitis vinifera cultivar Muscat of Hamburg, in two different years (2006 and 2007). Five time points per year and two biological replicates per stadium were considered. To reduced intra-plant and inter-plant biological variability, for each ripening stadium we collected around hundred berries from several bunch grapes of five plants of V. vinifera cv Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.
Project description:Bud endodormancy induction response of two genotypes (Seyval, a hybrid white wine grape and Vitis riparia, PI588259, a native North American grape species) was compared under long (15 h) and short (13 h) photoperiods. Proteins were extracted from both genotypes for all time points and experimental conditions. The proteins were separaed by 2D-PAGE, trypsin digested, and the peptides identified with a MALDI-TOF-TOF mass spectrometer. A master gel was made and mapped with all proteins from both genotypes. The proteins were identified by matching the peptide sequences against the 8X Vitis vinifera grape genome in NCBI. This study was funded by NSF grant DBI064755 and is the result of a collaboration between Dr. Anne Fennell at South Dakota State University and Dr. Grant R. Cramer at the University of Nevada, Reno.