Project description:A Gram-negative, red-pigment-producing marine bacterial strain, designated S1-1, was isolated from the tidal flat sediment of the Yellow Sea, Korea. On the basis of phenotypic, phylogenetic, and genetic data, strain S1-1 (KCTC 11448BP) represented a new species of the genus Zooshikella. Thus, we propose the name Zooshikella rubidus sp. nov. Liquid chromatography and mass spectrometry of the red pigments produced by strain S1-1 revealed that the major metabolic compounds were prodigiosin and cycloprodigiosin. In addition, this organism produced six minor prodigiosin analogues, including two new structures that were previously unknown. To our knowledge, this is the first description of a microorganism that simultaneously produces prodigiosin and cycloprodigiosin as two major metabolites. Both prodigiosin and cycloprodigiosin showed antimicrobial activity against several microbial species. These bacteria were approximately 1.5-fold more sensitive to cycloprodigiosin than to prodigiosin. The metabolites also showed anticancer activity against human melanoma cells, which showed significantly more sensitivity to prodigiosin than to cycloprodigiosin. The secondary metabolite profiles of strain S1-1 and two reference bacterial strains were compared by liquid chromatography-mass spectrometry. Multivariate statistical analyses based on secondary metabolite profiles by liquid chromatography-mass spectrometry indicated that the metabolite profile of strain S1-1 could clearly be distinguished from those of two phylogenetically related, prodigiosin-producing bacterial strains.
Project description:modENCODE_submission_3311 This submission comes from a modENCODE project of Eric Lai. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We plan to generate a comprehensive catalog of expressed and functional microRNAs, and generate biological evidence for their regulatory activity. We plan also to delineate the primary transcription units of microRNA genes. Finally, we plan to annotate other classes of non-miRNA expressed small RNAs, as least some of which may define novel classes of small RNA genes. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: RNA-seq. BIOLOGICAL SOURCE: Cell Line: S1; Tissue: embryo-derived cell-line; Developmental Stage: late embryonic stage; Sex: Unknown; EXPERIMENTAL FACTORS: Cell Line S1