Project description:Odorous volatile organic compounds (VOC) and hydrogen sulfide (H2S) are emitted together with ammonia (NH3) from manure slurry applied as a fertilizer, but little is known about the composition and temporal variation of the emissions. In this work, a laboratory method based on dynamic flux chambers packed with soil has been used to measure emissions from untreated pig slurry and slurry treated by solid-liquid separation and ozonation. Proton-transfer-reaction mass spectrometry (PTR-MS) was used to provide time resolved data for a range of VOC, NH3 and H2S. VOC included organic sulfur compounds, carboxylic acids, phenols, indoles, alcohols, ketones and aldehydes. H2S emission was remarkably observed to take place only in the initial minutes after slurry application, which is explained by its high partitioning into the air phase. Long-term odor effects are therefore assessed to be mainly due to other volatile compounds with low odor threshold values, such as 4-methylphenol. PTR-MS signal assignment was verified by comparison to a photo-acoustic analyzer (NH3) and to thermal desorption GC/MS (VOC). Due to initial rapid changes in odorant emissions and low concentrations of odorants, PTR-MS is assessed to be a very useful method for assessing odor following field application of slurry. The effects of treatments on odorant emissions are discussed.
Project description:Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socio-economic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.
Project description:Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha?1. Manure applications in conventional tillage systems led to higher SOC stocks (+?2.2 Mg ha?1) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+?2.7 Mg ha?1) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0–15 cm by 9.5 Mg ha?1 and in 16–20 cm by 13.6 Mg ha?1), but SOC stocks were also increased in deeper soils (>?20 cm 4.6 Mg ha?1), regardless of the tillage intensity. The highest relative SOC increase (+?48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+?3.1 Mg ha?1). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+?5.1 Mg ha?1) and alkaline soils (+?5.1 Mg ha?1). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+?1.7 Mg ha?1) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (>?20 years) fertilizer effects and carbon sequestration.
Project description:TSLP-stimulated CD4+ T cells block the promotion of breast cancer in a spontaneous PyMT mouse model. The goal of this project is to investigate what are the epigenetic changes induced by CD4+ T cells that lead to diminished proliferation of cancer cells
Project description:The current study investigated the impact of chicken litter application on the abundance of multidrug-resistant Enterococcus spp. in agricultural soil. Soil samples were collected from five different strategic places on a sugarcane farm before and after manure application for four months. Chicken litter samples were also collected. Enterococci were enumerated using the Enterolert®/Quanti-Tray 2000® system and confirm and differentiated into species using real-time PCR. The antibiotic susceptibility profile of the isolates was determined using the disk diffusion method following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The overall mean bacterial count was significantly higher (p < 0.05) in manure-amended soil (3.87 × 107 MPN/g) than unamended soil (2.89 × 107 MPN/g). Eight hundred and thirty-five enterococci (680 from soil and 155 from litter) were isolated, with E. casseliflavus being the most prevalent species (469; 56.2%) and E. gallinarum being the least (16; 1.2%). Approximately 56% of all the isolates were resistant to at least one antibiotic tested, with the highest resistance observed against tetracycline (33%) and the lowest against chloramphenicol (0.1%); 17% of E. faecium were resistant to quinupristin-dalfopristin. Additionally, 27.9% (130/466) of the isolates were multidrug-resistant, with litter-amended soil harbouring more multidrug-resistant (MDR) isolates (67.7%; 88/130) than unamended soil (10.0%; 13/130). All isolates were susceptible to tigecycline, linezolid and gentamicin. About 7% of the isolates had a multiple antimicrobial resistance index > 0.2, indicative of high antibiotic exposure. Although organic fertilizers are regarded as eco-friendly compared to chemical fertilizers for improving soil fertility, the application of untreated animal manure could promote the accumulation of antibiotics and their residues and antibiotic-resistant bacteria in the soil, creating an environmental reservoir of antimicrobial resistance, with potential human and environmental health risks.
Project description:To identify differentially expressed genes and key biological pathways that define toxicity following nanomaterial exposure, we performed microarray analyses on NR8383 macrophages: here is the control for submerged condition. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement N°. 686098
Project description:BACKGROUND:Cow manure is not only an agricultural waste, but also an organic fertilizer resource. The application of organic fertilizer is a feasible practice to mitigate the soil degradation caused by overuse of chemical fertilizers, which can affect the bacterial diversity and community composition in soils. However, to our knowledge, the information about the soil bacterial diversity and composition in tea plantation applied with cow manure fertilization was limited. In this study, we performed one field trial to research the response of the soil bacterial community to cow manure fertilization compared with urea fertilization using the high-throughput sequencing technique of 16S rRNA genes, and analyzed the relationship between the soil bacterial community and soil characteristics during different tea-picking seasons using the Spearman's rank correlation analysis. RESULTS:The results showed that the soil bacterial communities were dominated by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria across all tea-picking seasons. Therein, there were significant differences of bacterial communities in soils with cow manure fertilization (CMF) and urea fertilization (UF) in three seasons: the relative abundance of Bacteroidetes in CMF was significantly higher than that in UF and CK in spring, and the relative abundance of Proteobacteria and Bacteroidetes in CMF was significantly higher than that in UF and CK in autumn. So, the distribution of the dominant phyla was mainly affected by cow manure fertilization. The diversity of bacterial communities in soils with cow manure fertilization was higher than that in soils with urea fertilization, and was the highest in summer. Moreover, soil pH, OM and AK were important environmental properties affecting the soil bacterial community structure in tea plantation. CONCLUSIONS:Although different fertilizers and seasons affect the diversity and structure of soil microorganisms, the application of cow manure can not only improve the diversity of soil bacteria, but also effectively regulate the structure of soil bacterial community in tea plantation. So, cow manure fertilization is more suitable for tea plantation.
Project description:Application of inorganic nitrogen (N) fertilizer and manure can increase nitrous oxide (N2O) emissions. We tested the hypothesis that increased N2O flux from soils amended with manure reflects a change in bacterial community structure and, specifically, an increase in the number of denitrifiers. To test this hypothesis, a field experiment was conducted in a drip-irrigated cotton field in an arid region of northwestern China. Treatments included plots that were not amended (Control), and plots amended with urea (Urea), animal manure (Manure) and a 50/50 mix of urea and manure (U+M). Manure was broadcast-incorporated into the soil before seeding while urea was split-applied with drip irrigation (fertigation) over the growing season. The addition treatments did not, as assessed by nextgen sequencing of PCR-amplicons generated from rRNA genes in soil, affect the alpha diversity of bacterial communities but did change the beta diversity. Compared to the Control, the addition of manure (U+M and Manure) significantly increased the abundance of genes associated with nitrate reduction (narG) and denitrfication (nirK and nosZ). Manure addition (U+M and Manure) did not affect the nitrifying enzyme activity (NEA) of soil but resulted in 39-59 times greater denitrifying enzyme activity (DEA). In contrast, urea application had no impact on the abundances of nitrifier and denitrifier genes, DEA and NEA; likely due to a limitation of C availability. DEA was highly correlated (r = 0.70-0.84, P < 0.01) with the abundance of genes narG, nirK and nosZ. An increase in the abundance of these functional genes was further correlated with soil NO3 -, dissolved organic carbon, total C, and total N concentrations, and soil C:N ratio. These results demonstrated a positive relationship between the abundances of denitrifying functional genes (narG, nirK and nosZ) and denitrification potential, suggesting that manure application increased N2O emission by increasing denitrification and the population of bacteria that mediated that process.
Project description:To identify differentially expressed genes and key biological pathways that define toxicity following nanomaterial exposure, we performed microarray analyses on NR8383 macrophages exposed for 4 h to 2 µg/mL of Fe2O3 (NRCWE018). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement N°. 686098