Project description:Early- and late-onset forms of Alzheimer’s disease (AD) share common features that include abnormalities in lipid metabolism, immune response and synaptic function. Of these, the role of lipids remains the least understood. Our study revealed that molecular functions related to Stearoyl-CoA Desaturase (SCD), the rate limiting enzyme in monounsaturated fatty acid synthesis were specifically altered in the hippocampus of 3xTg-AD (a model of early-onset AD). Remarkably, infusion of an SCD inhibitor (SCDi) reversed 40% of altered immune and synapse genes, rescue dendritic spine number and structure, recovered activity-associated immediate-early gene expression and restored learning and memory in 3xTg-AD mice. In addition, we employed single cell RNA sequencing to characterize the cellular landscape of microglia subpopulations within the 3xTg hippocampus and uncovered that SCDi reversed microglial activation and polarization. Together, we show that a single lipid enzyme, SCD, impinges on the core features of AD.
Project description:Early- and late-onset forms of Alzheimer’s disease (AD) share common features that include abnormalities in lipid metabolism, immune response and synaptic function. Of these, the role of lipids remains the least understood. Our study revealed that molecular functions related to Stearoyl-CoA Desaturase (SCD), the rate limiting enzyme in monounsaturated fatty acid synthesis were specifically altered in the hippocampus of 3xTg-AD (a model of early-onset AD). Remarkably, infusion of an SCD inhibitor (SCDi) reversed 40% of altered immune and synapse genes, rescue dendritic spine number and structure, recovered activity-associated immediate-early gene expression and restored learning and memory in 3xTg-AD mice. In addition, we employed single cell RNA sequencing to characterize the cellular landscape of microglia subpopulations within the 3xTg hippocampus and uncovered that SCDi reversed microglial activation and polarization. Together, we show that a single lipid enzyme, SCD, impinges on the core features of AD.
Project description:Methylglyoxal (MG) is a reactive alpha-dicarbonyl by-product of glycolysis. Several bio-defense systems to detoxify the highly toxic MG are equipped in our body, including an enzymatic system by glyoxalase (GLO) 1 and GLO2 and a scavenge system by vitamin B6 (VB6). We have reported that some population of patients with schizophrenia shows impairment of the MG detoxification systems. Although we have evidences showing a link between impairment of MG detoxification systems and development of schizophrenia, the molecular mechanism to connect them remains poorly understood. Here, we generated a novel mouse model for MG detoxification deficits by feeding Glo1 knockout mice with VB6-lacking diets (KO/VB6(-)), and evaluate effects of impaired MG detoxification systems on brain function. KO/VB6(-) mice showed the accumulation of MG in the prefrontal cortex (PFC), hippocampus, and striatum, and displayed schizophrenia-like behavioral deficits, such as social deficits, cognitive impairment, a sensorimotor deficit in the prepulse inhibition test. Furthermore, we found aberrant gene expression related to mitochondria function in the PFC of the KO/VB6(-) mice by RNA-seq and weighted gene correlation network analysis (WGCNA). Finally, we actually demonstrated respiratory deficits in mitochondria isolated from the PFC of KO/VB6(-) mice. These findings suggest that MG detoxification deficits might cause schizophrenia-like behavioral deficits via mitochondrial dysfunction in the PFC.
Project description:The human 16p11.2 gene locus is a hot spot for copy number variations, which predispose carriers to a range of neuropsychiatric phenotypes. Microduplications of 16p11.2 are associated with autism spectrum disorder (ASD), intellectual disability (ID), and schizophrenia (SZ). Despite the debilitating nature of 16p11.2 duplications, the underlying molecular mechanisms remain poorly understood. Here we performed a comprehensive behavioral characterization of 16p11.2 duplication mice (16p11.2dp/+) and identified social and cognitive deficits reminiscent of ASD and ID phenotypes. 16p11.2dp/+ mice did not exhibit the SZ-related sensorimotor gating deficits, psychostimulant-induced hypersensitivity, or motor impairment. Electrophysiological recordings of 16p11.2dp/+ mice found deficient GABAergic synaptic transmission and elevated neuronal excitability in the prefrontal cortex (PFC), a brain region critical for social and cognitive functions. RNA-sequencing identified genome-wide transcriptional aberrance in the PFC of 16p11.2dp/+ mice, including downregulation of the GABA synapse regulator Npas4. Restoring Npas4 expression in PFC of 16p11.2dp/+ mice ameliorated the social and cognitive deficits and reversed GABAergic synaptic impairment and neuronal hyperexcitability. These findings suggest that prefrontal cortical GABAergic synaptic circuitry and Npas4 are strongly implicated in 16p11.2 duplication pathology, and may represent potential targets for therapeutic intervention in ASD.
Project description:The interior of the eukaryotic cell nucleus is a highly organized 3D structure. In mature hippocampal and cortical pyramidal neurons, transcriptionally silent DNA is typically compacted in a few clusters referred to as chromocenters that are strongly stained with DNA intercalating agents like DAPI and whose function is still uncertain. We found that this 3D structure was severely disrupted by the incorporation of the chimeric histone H2BGFP into neuronal chromatin. Experiments in inducible and forebrain restricted bitransgenic mice demonstrated that the expression of this histone alters the higher-order organization of neuronal heterochromatin and causes a complex behavioral phenotype that includes hyperactivity, and social interaction, prepulse inhibition and cognitive defects. This phenotype was associated with highly specific transcriptional deficits that affected several serotonin receptor genes located at the edge of gene desert regions. Pharmacological and electrophysiological experiments indicate that this epigenetically-induced hyposerotonergic state may underlie the behavioral defects. Our results suggest a new role for perinuclear heterochromatin and chromocenter organization in the epigenetic regulation of neuronal gene expression and mental illness. We used microarrays to detect differential gene expression in transgenic mice expressing histone H2BGFP in the forebrain. We obtained triplicate samples (biological replicates) of either genotype (wild-type and H2BGFP mice). Each sample contained pooled total RNA from the hippocampi of 2 three-month old genotype-matched mice.