Project description:Genome sequencing of a Thermosipho activus strain Rift-s3T, novel anaerobic, extremely thermophilic, hydrolytic bacterium isolated from a deep-sea sample from Guaymas Basin, Gulf of California.
Project description:Thermotogales are rod-shaped, Gram-negative, anaerobic, (hyper) thermophiles distinguished by an outer sheath-like toga, which comprises an outer membrane (OM) and an amorphous layer (AL). Thermosipho globiformans bacteria can transform into spheroids with multiple cells concurrently with AL disintegration during early growth; the cell is defined as the cytoplasmic membrane (CM) plus the entity surrounded by the CM. Spheroids eventually produce rapidly moving periplasmic 'progenies' through an unknown mechanism. Here, we used high-temperature microscopy (HTM) to directly observe spheroid generation and growth. Rod OMs abruptly inflated to form ~2 μm-diameter balloons. Concurrently, multiple globular cells emerged in the balloons, suggesting their translocation and transformation from the rod state. During spheroid growth, the cells elongated and acquired a large dish shape by possible fusion. Spheroids with dish-shaped cells further enlarged to ~12 μm in diameter. HTM and epifluorescence-microscopy results collectively indicated that the nucleoids of dish-shaped cells transformed to form a ring shape, which then distorted to form a lip shape as the spheroid enlarged. HTM showed that 'progenies' were produced in the spheroid periplasm. Transmission electron microscopy results suggested that the 'progenies' represented immature progenies lacking togas, which were acquired subsequently.