Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR. AsxR was cloned under the control the arabinose inducible promoter Para. Escherichia coli O157:H7 str. TUV93-0 with pAsxR or empty vector was cultured in MEM-HEPES media to an OD600 of 0.8 and 0.2% arabinose added. 10min after addition of arabinose 10ml of cells were harvested and and pellets resuspended in 1ml of Trizol and total RNA isolated. RNAs were labelled using the SuperScript Plus indirect cDNA labelling System. Triplicate control RNAs were pooled and hybridised to seperate AsxR test RNAs on three microarays. Arrays were hybridised using the Maui hybridisation platform and Scann using and Axon Autoloader Scanner. GenePix software was used to analyse images and GPR files were analysed using Genespring 7.3.1.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:In large-scale production processes, metabolic control is typically achieved by limited supply of essential nutrients like glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programs. Previously, we characterized short- and long-term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply, while studying a continuously running two-compartment bioreactor system comprising a stirred tank reactor (STR) and a plug flow reactor (PFR). Genes were repeatedly switched on/off when E. coli returned to the STR. Moreover, E. coli revealed highly diverging long-term transcriptional responses in ammonia compared to glucose fluctuations. The identification of target genes may help to create robust cells and processes for large-scale application.