Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed. A two chip study using total RNA recovered from wild-type and motile strains of Sphingomonas. sp A1 grown in 0.5% alginate medium.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources. Sphingomonas sp. ATCC 31555 strain (stored in our laboratory) was first seeded in an inoculum medium (20 g/L glucose, 3 g/L yeast extract, 3 g/L malt extract, and 5 g/L fish meal protein peptone, pH 7.0), and then cultured in a fermentation medium containing 40 g/L sucrose, 4.0 g/L nitrogen source, 0.6 g/L KH2PO4, and 0.2 g/L MgSO4.7H2O at 37°C. The nitrogen sources used in the present study were as follows: NaNO3 (4.0 g/L) as inorganic nitrogen (IN), beef extract (4.0 g/L) as organic nitrogen (ON), and NaNO3 (1.5 g/L) + beef extract (2.5 g/L) as complex nitrogen (CN). All cultivations were conducted in flasks with constant rotary shaking at 400â??1,000 rpm and 37°C.
Project description:Investigation of whole genome gene expression level changes in Sphingomonas. sp A1 AlgO-deficient mutant grown on alginate compared with that on yeast extract AlgO is a possble transcriptional factor described in J. Bacteriol. (2000) 182(14):3998-4004 by Momma K, Okamoto M, Mishima Y, Mori S, Hashimoto W, and Murata K. A two chip study using total RNA recovered from two cultures of Sphingomonas. sp A1 AlgO-deficient mutant grown in 0.5% alginate medium and 0.5% yeast extract medium. Each chip measures the expression level of genes from Sphingomonas. sp A1.
Project description:This study examines genome-wide expression of the phenanthrene-degrading Sphingomonas sp. LH128 as a response to short-term starvation stress. For this purpose, the strain was subjected to complete nutrient starvation for 4h after growth on a rich medium. Survival was monitored by plating and transcriptomic response was determined by whole-genome microarray analysis. The data showed no major differences were obsrved in gene expression and the viability of the cells were not affected during short-term incubation time
Project description:The survival, pollutant degradation activity and transcriptome response was monitored in Sphingomonas sp. LH128 inoculated into soil. Cultivable cell numbers were determined by plating, while phenanthrene degradation was monitored by HPLC. The genetic base for the adaptive strategy of LH128 in soil was investigated by using microarray consisting 7,200 gene-coding ORFs. During 4 hours of incubation, 510 genes were differentially expressed (317 increased and 193 reduced expression) while 610 genes were differentially expressed (318 increased and 292 reduced) after 10 days of incubation. Genes with increased expression comprised of gene encoding PAH catabolic enzymes, stress resistance, oxidative stress tolerance, outer membrane proteins/porins and efflux pump proteins while the downregulated genes comprised of genes encoding flagellar biosynthesis, ribosomal proteins and ATPase. Transcriptomic response of phenanthrene degrading Sphingomonas sp. LH128 inoculated into phenanthrene contaminated soil after 4h and after 10 days of incubation was studied using genome-wide gene expression analysis. For this purpose, the strain was pregrown in minimal medium and inoculated at appropriated celld densitites. RNA was extracted both from soil and and from initial inoculum and cDNA was synthesized and labeled with Cy3. Transcriptomic response in soil of three replicates per conditions after both incubation duration were analyzed and compared with the initial inoculum
Project description:This study examines genome-wide expression of the phenanthrene-degrading Sphingomonas sp. LH128 as a response to short-term starvation stress. For this purpose, the strain was subjected to complete nutrient starvation for 4h after growth on a rich medium. Survival was monitored by plating and transcriptomic response was determined by whole-genome microarray analysis. The data showed no major differences were obsrved in gene expression and the viability of the cells were not affected during short-term incubation time Transcriptomic response of phenanthrene degrading Sphingomonas sp. LH128 starved for 4h in isotonic solution of 0.01 mM MgS04 was studied using genome-wide gene expression analysis. For this purpose, the strain was pregrown in minimal medium to an OD600 of 0.5, washed twice with 0.01 mM MgS04 and resuspended in the same solution to an OD of 0.5. RNA was extracted both from starved cells and from the initial culture (non-starved cells) and cDNA was synthesized and labeled with Cy3. Transcriptomic response of three replicates were analyzed and compared with the initial inoculum