Project description:The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n?=?16) and captive (n?=?6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.
Project description:In the light of recent molecular studies, there are two phylogenetic species of the red panda (Ailurus fulgens): Ailurus fulgens fulgens and Ailurus fulgens styani. The red panda belongs to the endangered species living in the wild only in Asia and is included in the CITES list. Although the biology and diet of this species has been extensively described, the histological structure of the tongue and lingual glands has not yet been characterized in detail in relation to the lifestyle of this mammal under specific conditions and as a basis for comparative anatomical studies of the biodiversity of endemic species. Study samples were collected from two adult males of Ailurus fulgens f. held in Wrocław Zoological Garden. Both tongues were examined macroscopically; moreover, samples with lingual papillae for light microscopy and scanning electron microscopy (SEM) were collected from the apex, body and root of the tongue. Both tongues of the Ailurus fulgens f. males were approximately 9 cm long. The dorsal lingual surface was covered with mechanical and gustatory lingual papillae. Filiform papillae were observed on the apex and the body of the tongue, while small conical papillae were observed on the root of the tongue. An elongated, 1-1.5 cm long cylinder-shaped lyssa was observed in the ventral part of the apex. Moreover, most numerous and largest round in shape fungiform papillae were observed on the apex and on the border of the body and root of the tongue, located directly rostrally to 12-13 round and oval in shape vallate papillae. The SEM study showed that filiform papillae on the apex had several long secondary processes, while filiform papillae on the body of the tongue were taller and their secondary papillae were shorter than the equivalent structures on the apex of the tongue. The SEM study showed numerous taste pores on the surface of the fungiform papilla, while irregular surface of the vallate papillae, however some of them had smoother surface. Mixed glands (comprised of mucous acini and serous acini) were present within the vallum (within the connective tissue core) of the vallate papilla. Beneath the papillae more serous glands were observed, while the posterior lingual glands in the caudal part of the root of the tongue were mucoserous (mucous units were prevalent). A characteristic feature of the tongue of Ailurus fulgens f. was the presence of lyssa, which is comparable to other representatives of Carnivora, but the number of vallate papillae was individually variable. The lack of strongly developed mechanical conical papillae probably may be related to the type of plant food that is particularly dominant in red panda. Further differences between Ailurus fulgens f. and Ailurus fulgens s. cannot be excluded. The results of these studies may be useful especially for veterinarians specializing in working with exotic animals and people dealing with wildlife conservation.
Project description:BACKGROUND:Disease prevention and control is a significant part in the ex-situ conservation of the endangered red panda (Ailurus fulgens), being bacterial infection is one of the most important health threats to the captive population. To date, studies about the infection caused by Escherichia coli in the red panda are scarce. This study was conducted to determine the cause of death of a captive red panda through clinical symptoms, complete blood count, biochemical analysis, pathological diagnosis and bacterial whole genome sequencing. CASE PRESENTATION:The following report describes a case of a 1.5?year old captive red panda (Ailurus fulgens) that was found lethargic and anorectic. She was moved to the quarantine area for daily treatment with 50?mg of Cefpodoxime Proxetil. During the three-day treatment, she did not eat or defecate, and then died. Clinical hematology revealed the values of neutrophils, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and blood urea nitrogen (BUN) were significantly higher. Histological analysis demonstrated major pathological damage in the kidneys, liver and lungs, characterized by hyperemia, parenchymal cell degeneration and necrosis and inflammatory cell infiltration which were predominantly neutrophilic. A bacterial strain confirmed as Escherichia coli was isolated post mortem. Whole genome sequencing of the E. coli showed the complete genome size was 4.99 Mbp. PapA, PapC, OmpA, OmpU and other virulence factors which specific to Uropathogenic Escherichia coli (UPEC) were found in the isolate. Among the virulence factors, P pili, type I pili and related factors of the iron uptake system were associated with nephrotoxicity. CONCLUSION:The red panda died of bacterial infection caused by an uropathogenic strain of Escherichia coli. The pathogenic mechanisms of the strain are closely related to the expression of specific virulence genes.