Project description:Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures. To maximize PHA production, mixed microbial cultures may be enriched for PHA-producing bacteria with a high storage capacity through the imposition of cyclic, aerobic feast-famine conditions in a sequencing batch reactor (SBR). Though enrichment SBRs have been extensively investigated a bulk solutions-level, little evidence at the proteome level is available to describe the observed SBR behavior to guide future SBR optimization strategies. As such, the purpose of this investigation was to characterize proteome dynamics of a mixed microbial culture in an SBR operated under aerobic feast-famine conditions using fermented dairy manure as the feedstock for PHA production. At the beginning of the SBR cycle, excess PHA precursors were provided to the mixed microbial culture (i.e., feast), after which followed a long duration devoid of exogenous substrate (i.e., famine). Two-dimensional electrophoresis was used to separate protein mixtures during a complete SBR cycle, and proteins of interest were identified.
2017-01-31 | PXD003126 | Pride
Project description:Single-Stage Autotrophic Process in SBR System
Project description:Experimental design: 2 genotypes: PI- (resistant USDA Plant Introduction (PI459025B) line containing SBR Rpp4 resistance gene) & Cultivar Williams that does not have a known SBR resistance gene 2 treatments: Soybean rust (Phakopsora pachyrhizi) isolate Hawaii 94-1 & mock infection 3 replications 6 time points: 12, 24, 72, 144, 216 and 288 hours after inoculation TOTAL: 72 Affymetrix GeneChip(R) Soybean Genome Arrays Mock treatment: 0.01% Tween 20 Hawaii 94-1 treatment: 500,000 spores per ml in 0.01% Tween 20 ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Steve Whitham. The equivalent experiment is GM37 at PLEXdb.]
Project description:In dairy cows, milk production and composition are affected by numerous factors, including diet. Milk is the body fluid with the highest RNA concentration, including numerous microRNA. These microRNA presence in the different milk compartments is still poorly documented and the effect of feed restriction on milk miRNome has not been described yet. The aim of this study was to describe the effects of feed restrictions of different intensitizes on milk compartment miRNome composition. Two feed restriction trials were performed on lactating dairy cows, one of high intensity and one of moderate intensity. 2 896 mature microRNA were identified in milk, including 1 493 that were already known in bovine specie. Among the 1 095 miRNA that were abundant enough to be informative, 10% were exclusive to one milk compartment and the abundance of 155 varied between compartments, revealing a specific miRNome for each milk fraction. Feed restriction affected differently these miRNome, with microRNA in whole milk and milk extracellular vesicles being the most affected and microRNA in fat globules and exfoliated mammary epithelial cells being relatively or completely unaffected. Target prediction of known microRNA that varied under feed restriction reflected modification of some key pathways for lactation related to milk fat and protein metabolisms, cell cycle and stress responses. These findings open up opportunities for future research on the use of milk miRNA as biomarkers of energy status in dairy cows.