Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses. The cell line used fhere was a microvascular endothelial line, HMEC (Ades et al, 1992. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 99:683-690); due to loss of the original analysis files, only raw data files are provided. Infection times were performed at a multiplicity of infection (# bacteria/endothelial cell) of 10 for either 1 hour or 3 hours, after which RNA was harvested and reverse transcribed. Labeled cDNAs were used to probe HEEBO arrays purchased from Microarrays Inc. (Nashville, TN). In each of three biological replicate experiments, for each time point, three comparisons were made. First, the L. interrogans-infected cells were compared to the L. biflexa-infected cells. Second, the L. Interrogans-infected cells were compared to the uninfected cells. Third, the L. biflexa-infected cells were compared to the uninfected cells. A second endothelial cell line,
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses. The cell line used was Ea.hy926, a macrovascular line (Edgell, C. J.,et al. 1990. In vitro Cell. & Dev. Biol. 26:1167-1172, and Edgell, C. J., et al. 1983. Proc. Natl. Acad. Sci. 80:3734-3737). Infection times were performed at a multiplicity of infection (# bacteria/endothelial cell) of 10 for either 1 hour or 3 hours, after which RNA was harvested and reverse transcribed. Labeled cDNAs were used to probe HEEBO arrays purchased from Microarrays Inc. (Nashville, TN). In each of three biological replicate experiments, for each time point, three comparisons were made. First, the L. interrogans-infected cells were compared to the L. biflexa-infected cells. Second, the L. Interrogans-infected cells were compared to the uninfected cells. Third, the L. biflexa-infected cells were compared to the uninfected cells. A second endothelial cell line, HMEC (Ades et al, 1992. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 99:683-690), which is of microvascular origin, was also used; raw data files are provided separately.
Project description:L. interrogans, a causative agent of leptospirosis, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. In order to identify genes involved in survival in the early spirochetemic phase of infection, we performed a transcriptional analysis of L. interrogans serovar Copenhageni upon exposure to serum in comparison with EMJH medium.
Project description:L. interrogans, a causative agent of leptospirosis, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. In order to identify genes involved in survival in the early spirochetemic phase of infection, we performed a transcriptional analysis of L. interrogans serovar Copenhageni upon exposure to serum in comparison with EMJH medium. Analysis used RNA derived from serum- and EMJH-treated L. interrogans serovar Copenhageni as experimental and control samples, respectively. The samples were composed of 3 biological replicates with dye swap for each replicate, resulting in 6 arrays. Direct comparisons were made between arrays of experimental and control samples using raw data pulled from two different channels for data analysis.