Project description:Bacterial transcription factors (TFs) regulate gene expression to adapt to changing environments; when combined, the TF’s regulatory actions comprise transcriptional regulatory networks (TRNs). The chromatin immunoprecipitation (ChIP) assay is the major contemporary method for mapping in vivo protein-DNA interactions in the genome. It enables the genome-wide study of transcription factor binding sites (TFBSs) and gene regulation. Although rapidly accumulating publicly-available ChIP data are a valuable resource for the study of gene regulation, there are no full datasets of key regulators in Pseudomonas putida. Here, we present the genome-wide binding for major TFs in P. putida.