Project description:<p>This study utilized neurologically normal control samples deposited in North American Brain Expression Consortium (NABEC). This top-level study, phs001300, makes available all phenotype data of the NABEC study participants. <br/>In addition, molecular data of six sub-studies are available through dbGaP: <ol> <li>NABEC Genome-Wide Genotyping - <a href="study.cgi?study_id=phs000249">phs000249</a></li> <li>NABEC Exome Sequencing - <a href="study.cgi?study_id=phs001301">phs001301</a></li> <li>NABEC CAGE Sequencing of Human Cerebral Frontal Cortex - <a href="study.cgi?study_id=phs001302">phs001302</a></li> <li>NABEC mRNA Sequencing of human Cerebral Frontal Cortex - <a href="study.cgi?study_id=phs001353">phs001353</a></li> <li>NABEC Total RNA Sequencing of human Cerebral Frontal Cortex - <a href="study.cgi?study_id=phs001354">phs001354</a></li> <li>NABEC Neurochip Genotyping - <a href="study.cgi?study_id=phs001462">phs001462</a></li> </ol> </p>
Project description:A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on DNA methylation and mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on methylation status or expression profile. We find an abundance of genetic cis regulation mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation. Authorized Access data: Mapping of GEO sample accessions to dbGaP subject/sample IDs is available through dbGaP Authorized Access, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000249
Project description:A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on DNA methylation and mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on methylation status or expression profile. We find an abundance of genetic cis regulation mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation. Authorized Access data: Mapping of GEO sample accessions to dbGaP subject/sample IDs is available through dbGaP Authorized Access, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000249 Because of our interest in genomic regulation of expression and neurological disorders we embarked upon a series of experiments to provide a brain region-specific contextual framework for genetic and epigenetic regulation of gene expression. We obtained frozen brain tissue from the cerebellum and frontal cortex from 318 subjects (total 724 tissue samples).
Project description:A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation. Authorized Access data: Mapping of GEO sample accessions to dbGaP subject/sample IDs is available through dbGaP Authorized Access, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000249
Project description:A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on mRNA expression distinct human brain regions. We show that brain tissues may be readily distinguished based on expression profile. We find an abundance of genetic cis regulation mRNA expression. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation. Authorized Access data: Mapping of GEO sample accessions to dbGaP subject/sample IDs is available through dbGaP Authorized Access, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000249 Because of our interest in genomic regulation of expression and neurological disorders we embarked upon a series of experiments to provide a brain region-specific contextual framework for genetic and epigenetic regulation of gene expression. We obtained frozen brain tissue from the cerebellum and frontal cortex from 396 subjects (total 911 tissue samples).