Project description:To investigate the lncRNA profiles in low birth weight rats with reduced nephron endowment induced by restriction of maternal protein intake. Low birth weight by reduced nephron endowment is a risk factor for hypertension and end-stage renal disease in adulthood.
Project description:We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal pre-pregnancy BMI and fetal growth. We used RNA microarray (Agilent 8 X 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). We applied a weighted gene co-expression network analysis (WGCNA) and identified genes modules and hub genes that were associated with maternal BMI as well as newborn birth weight. Modules of interest were further characterized by gene ontology (GO) and pathway enrichment analyses. We assessed the mediating effects of modules and hub genes in the association between maternal BMI and newborn weight.
Project description:Epigenetic profiling of birth-weight discordant twins using Illumina's 450K Human DNA methylation BeadChip Comparing DNA methylation difference in birth-weight discordant twin pairs
Project description:Sub-optimal fetal development is associated with an increased risk of developing cardiovascular disease, type 2 diabetes (T2D) and adiposity later in life. However, definitions of intrauterine growth restriction (IUGR) and small for gestational age (SGA) are based on simple statistical approaches that may misclassify infants with a normal developmental profile and vice versa. We used an unbiased global profiling approach to identify gene expression patterns in umbilical cord tissue from 38 infants and identified a set of 466 genes which separated the subjects into 2 distinct groups – one biased towards lower birth weight and one biased towards normal birth weight. The data suggest that approximately 30% of children of normal size have a molecular profile more typical of impaired fetal development and who may be on a programmed trajectory. Differences in expression between the two groups encompassed 384 upregulated and 82 downregulated genes. Molecular profiling at birth may have utility in identifying markers that potentially reflect antenatal developmental and may be predictive of future phenotypic development after birth. Importantly, it may provide an alternative to the current classification of infants using birth weights. RNA from umbilical cord tissue from full term neonates was extracted and hybridized. Separation into 2 distinct groups, independent of birth weight, but based solely on gene expression levels was analysed by Genespring. After appropriate statistical analysis, one group was keenly associated with a higher birth weight (22 samples) while the other was associated with a lower birth-weight (18 samples). Technical replicates were included for all 40 samples.
Project description:Analysis of gene expression in the lungs of pigs from high and low litter birth weight groups (HBW and LBW) inoculated with swine influenza virus. The aim of the experiment is to determine whether litter birth weight has an effect on the innate immune response to infection in pigs, and whether differences in gene expression can be linked to epigenetic differences between the two birth weight groups.
Project description:Sub-optimal fetal development is associated with an increased risk of developing cardiovascular disease, type 2 diabetes (T2D) and adiposity later in life. However, definitions of intrauterine growth restriction (IUGR) and small for gestational age (SGA) are based on simple statistical approaches that may misclassify infants with a normal developmental profile and vice versa. We used an unbiased global profiling approach to identify gene expression patterns in umbilical cord tissue from 38 infants and identified a set of 466 genes which separated the subjects into 2 distinct groups – one biased towards lower birth weight and one biased towards normal birth weight. The data suggest that approximately 30% of children of normal size have a molecular profile more typical of impaired fetal development and who may be on a programmed trajectory. Differences in expression between the two groups encompassed 384 upregulated and 82 downregulated genes. Molecular profiling at birth may have utility in identifying markers that potentially reflect antenatal developmental and may be predictive of future phenotypic development after birth. Importantly, it may provide an alternative to the current classification of infants using birth weights.