Project description:Ewing sarcoma usually expresses the EWS/FLI fusion transcription factor oncoprotein. EWS/FLI regulates myriad genes required for Ewing sarcoma development. EWS/FLI binds GGAA-microsatellite sequences in vivo and in vitro, and these sequences provide EWS/FLI-mediated activation to reporter constructs, suggesting that they function as EWS/FLI-response elements. Genomic GGAA-microsatellites are highly variable and polymorphic. Current data suggest that there is an optimal “sweet-spot” GGAA-microsatellite length (of 18-26 GGAA repeats) that confers maximal EWS/FLI-responsiveness to target genes, but the mechanistic basis for this was not known. We now demonstrate the absolute necessity of an EWS/FLI-bound GGAA-microsatellite in regulation of the NR0B1 gene, as well as for Ewing sarcoma proliferation and oncogenic transformation. Biochemical studies, using recombinant Δ22 (a version of EWS/FLI containing only the FLI portion) demonstrated a stoichiometry of one Δ22-monomer binding to every two consecutive GGAA-repeats on shorter GGAA-microsatellite sequences. Surprisingly, the affinity for Δ22 binding to GGAA-microsatellites significantly decreased, and ultimately became unmeasureable, when the size of the GGAA-microsatellite was increased to the “sweet-spot” length. In contrast, a fully-functional EWS/FLI mutant (Mut9) that retains approximately half of the EWS portion of the fusion showed low affinity for smaller GGAA-microsatellites, but instead significantly increased its affinity at “sweet-spot” microsatellite lengths. Single-gene ChIP and genome-wide ChIP-seq and RNA-seq studies extended these findings to the in vivo setting. Taken together, these data demonstrate the absolute requirement of GGAA-microsatellites as EWS/FLI activating response elements in vivo and reveal an unsuspected novel role for the EWS portion of the EWS/FLI fusion in binding to optimal-length GGAA-microsatellites.
Project description:Expression profiling was used to identify genes differentially expressed in MSS (microsatellite stable) and MSI (microsatellite unstable) colon cancer cell lines. Data submitted in support of manuscript entitled Villin expression is frequently lost in poorly differentiated colon cancer, Diego Arango, Sheren Al-Obaidi, David S. Williams, Jose Dopeso, Rocco Mazzolini, Georgia Corner, Do-Sun Byun, Carmel Murone, Lars Tögel, Nikolajs Zeps, Lauri A. Aaltonen, Barry Iacopetta and John M. Mariadason, American Journal of Pathology, 2012. 5 microsatellite stable (MSS) and 5 microsatellite unstable (MSI) colon cancer cell lines profiled. Each cell line grown and arrayed in duplicate, and the duplicates averaged for each cell line before calculating means for MSS and MSI lines.
Project description:ERG activates prostate cancer specific gene expression program by recruiting RNA binding protein EWS to ETS-AP1 and GGAA microsatellite enhancers