Project description:The mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human acute myeloid leukemias (AML). To understand the role of YTHDF2 in AML, we generated m6A meRIP-seq libraries form Ythdf2fl/fl (Ythdf2CTL) pre-leukemic cells.
Project description:The mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human acute myeloid leukemias (AML). To understand the role of YTHDF2 in AML, we generated m6A meRIP-seq libraries form Ythdf2fl/fl; Vav-iCre (Ythdf2CKO) pre-leukemic cells.
Project description:Here, we use a novel technique for locating regions of N6-adenosine methylation (m6A) throughout the transcriptome and present a profile of m6A sites in the mouse brain. Our use of methylated RNA immunoprecipitation combined with RNA-seq (MeRIP-Seq) identifies thousands of RNAs which contain m6A sites. In addition, we find that regions of m6A formation are particularly enriched near stop codons, which might provide clues into the potential funciton of this highly prevalent RNA modificaiton. Examination of m6A sites in murine brain RNA.
Project description:Here, we use a novel technique for locating regions of N6-adenosine methylation (m6A) throughout the transcriptome and present a profile of m6A sites in the mouse brain. Our use of methylated RNA immunoprecipitation combined with RNA-seq (MeRIP-Seq) identifies thousands of RNAs which contain m6A sites. In addition, we find that regions of m6A formation are particularly enriched near stop codons, which might provide clues into the potential funciton of this highly prevalent RNA modificaiton. Examination of m6A sites in murine brain RNA and human embryonic kidney cells.
Project description:MeRIP-Seq data aligned to the genome (GRCh38) for cells with IDH1-Mut or IDH1-WT genotypes. Aligned data (BAM) are separated into input RNA and m6A immunoprecipitated RNA for each cell sample.
Project description:Our study demonstrated that the expression of Igf2bp1 in activated microglia was significantly up-regulated, implying a role of Igf2bp1 in LPS-induced m6A modifications in microglia. To understand the roles of Igf2bp1 on LPS-induced m6A modification in microglia, we performed Igf2bp1 loss-of-function (LOF) approach. Microglia stimulated by LPS were transfected with either scrambled siRNA control or Igf2bp1 siRNA for 48 hours. To m6A modification profiles in control and Igf2bp1 LOF microglia were determined by MeRIP-seq analysis.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Here we use MeRIP-Seq to analyze global adenosine methylation (m6A) in mRNAs in the midbrain and striatum of Fto-deficient mice. We find that Fto deficiency leads to increased methylation within a subset of mRNAs important for neuronal signaling, including many within the dopaminergic signaling pathway. Collectively, our results show that Fto regulates demethylation of specific mRNAs in vivo, and this activity relates to control of dopaminergic transmission. Profiling of m6A in midbrain and striatum from FTO knockout mice
Project description:Here we use MeRIP-Seq to analyze global adenosine methylation (m6A) in mRNAs in the midbrain and striatum of Fto-deficient mice. We find that Fto deficiency leads to increased methylation within a subset of mRNAs important for neuronal signaling, including many within the dopaminergic signaling pathway. Collectively, our results show that Fto regulates demethylation of specific mRNAs in vivo, and this activity relates to control of dopaminergic transmission. Profiling of m6A in midbrain and striatum from wild type mice