Project description:Abstract The short-faced mole (Scaptochirus moschatus) is a unique Chinese mammal that lives in burrows for life. In this study, we used Illumina NovaSeq sequencing to obtain the complete mitochondrial genome of the short-faced mole. The total length of the genome is 16,699 bp, containing 13 protein-coding genes, 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 1 control region, with a base composition of 33.82% A, 26.89% T, 25.27% C, and 14.01% G. Phylogenetic analysis of the Talpidae by using complete mitochondrial genome sequences of 14 Talpidae species shows that short-faced mole is closely related to Parascaptor leucura.
Project description:The faecal microbiota of muskoxen (n=3) pasturing on Ryøya (69° 33' N 18° 43' E), Norway, in late September was characterized using high-throughput sequencing of partial 16S rRNA gene regions. A total of 16 209 high-quality sequence reads from bacterial domains and 19 462 from archaea were generated. Preliminary taxonomic classifications of 806 bacterial operational taxonomic units (OTUs) resulted in 53.7-59.3 % of the total sequences being without designations beyond the family level. Firmicutes (70.7-81.1 % of the total sequences) and Bacteroidetes (16.8-25.3 %) constituted the two major bacterial phyla, with uncharacterized members within the family Ruminococcaceae (28.9-40.9 %) as the major phylotype. Multiple-library comparisons between muskoxen and other ruminants indicated a higher similarity for muskoxen faeces and reindeer caecum (P>0.05) and some samples from cattle faeces. The archaeal sequences clustered into 37 OTUs, with dominating phylotypes affiliated to the methane-producing genus Methanobrevibacter (80-92 % of the total sequences). UniFrac analysis demonstrated heterogeneity between muskoxen archaeal libraries and those from reindeer and roe deer (P=1.0e-02, Bonferroni corrected), but not with foregut fermenters. The high proportion of cellulose-degrading Ruminococcus-affiliated bacteria agrees with the ingestion of a highly fibrous diet. Further experiments are required to elucidate the role played by these novel bacteria in the digestion of this fibrous Artic diet eaten by muskoxen.
Project description:Muskoxen (Ovibos moschatus), a taxonomically unique Arctic species, are increasingly exposed to climate and other anthropogenic changes. It is critical to develop and validate reliable tools to monitor their physiological stress response in order to assess the impacts of these changes. Here, we measured fecal glucocorticoid metabolite (FGM) levels in response to the administration of adrenocorticotropic hormone (ACTH) in the winter (1 IU/kg) and summer (2 IU/kg) using two enzyme immunoassays, one targeting primarily cortisol and the other targeting primarily corticosterone. Fecal cortisol levels varied substantially within and among individuals, and none of the animals in either challenge showed an increase in fecal cortisol following the injection of ACTH. By contrast, two of six (winter) and two of five (summer) muskoxen showed a clear response in fecal corticosterone levels (i.e., maximal percentage increase as compared to time 0 levels > 100%). Increases in fecal corticosterone post-ACTH injection occurred earlier and were of shorter duration in the summer than in the winter and fecal corticosterone levels were, in general, lower during the summer. These seasonal differences in FGM responses may be related to the use of different individuals (i.e., influence of sex, age, social status, etc.) and to seasonal variations in the metabolism and excretion of glucocorticoids, intestinal transit time, voluntary food intake, and fecal output and moisture content. Results from this study support using FGMs as a biomarker of hypothalamic-pituitary-adrenal axis activity in muskoxen, advance our understanding of the physiological adaptations of mammals living in highly seasonal and extreme environments such as the Arctic, and emphasize the importance of considering seasonality in other species when interpreting FGM levels.
Project description:The present study aimed to estimate the prevalence of zoonotic pathogens Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii and Erysipelothrix in muskoxen (Ovibos moschatus) and sheep (Ovis aries) from Greenland. In 2017 and 2018, faecal samples were collected from wild muskoxen from three distinct populations (Zackenberg, Kangerlussuaq, and Ivittuut) and from domestic sheep from southwest Greenland. Blood samples were collected from muskoxen from Kangerlussuaq and Ivittuut and from sheep. Faecal samples were tested for specific DNA of G. duodenalis and Cryptosporidium spp., and blood samples were tested for antibodies against T. gondii and Erysipelothrix. The estimated prevalence of G. duodenalis was 0% (0/58), 17% (7/41) and 0% (0/55) in muskoxen from Zackenberg, Kangerlussuaq and Ivittuut, respectively, and 37% (16/43) in sheep. The estimated prevalence of Cryptosporidium was 0% (0/58), 2% (1/41), 7% (4/55) in muskoxen from Zackenberg, Kangerlussuaq, Ivittuut, respectively, and 2% (1/43) in sheep. Neither Giardia nor Cryptosporidium were detected in winter samples (0/78). Of the positive samples, Giardia from one muskox sample only was successfully typed as G. duodenalis assemblage A, and Cryptosporidium from two muskoxen was successfully typed as C. parvum, subtype IIdA20G1e. The estimated T. gondii seroprevalence was 2% (1/44) and 0% (0/8) in muskoxen from Kangerlussuaq and Ivittuut, respectively, and 1% (1/155) in sheep. The estimated Erysipelothrix seroprevalence was 2% (1/45) and 13% (1/8) in muskoxen from Kangerlussuaq and Ivittuut, respectively, and 7% (10/150) in sheep. The results of this study add to the scarce knowledge on zoonotic pathogens in the Arctic.
Project description:BackgroundThe small, single-stranded positive-sense RNA astroviruses are mostly known to be enteric viruses. In recent years, though, different astroviruses were reported in association with neurological disease in various species. In cattle, two distinct neurotropic astrovirus genotype species were described in numerous cases of nonsuppurative encephalomyelitis, with one of these viruses also reported in similar circumstances in several sheep. Here, we retrieved archived formalin-fixed, paraffin-embedded brain tissues of a muskox diagnosed with a comparable disease pattern in 1982 and investigated them for the presence of neurotropic astroviruses with various techniques.ResultsInitially, tissue samples scored positive for both neurotropic astroviruses by immunohistochemistry; however, unexpected results with further immunohistochemical testing, in situ hybridization and qRT-PCR prompted us to submit an RNA extract from the animal's brain material to next-generation sequencing. We were thus able to obtain the full genome of a novel astrovirus, muskox astrovirus CH18 (MOxAstV-CH18), whose closest relative is an enteric ovine astrovirus. Subsequently, viral RNA could be detected with a specific RT-PCR in the brain of the affected animal, but not in faecal samples from the current muskoxen herd of the animal park where the animal used to be kept.ConclusionsWe identified a novel astrovirus in a historical case of a captive muskox with nonsuppurative encephalomyelitis. Unfortunately, our results and the fact that no material from organs other than of the nervous system was available do not allow any assumption about the epidemiology or pathogenesis of the virus. Still, these findings are yet another piece of evidence that the tropism and species specificity of astroviruses could be more deceptive than generally assumed.