Project description:In this study, we used the illumina high throughput sequencing approach (Sequencing-By-Synthesis, or SBS) to develop the sequence resource of black pepper. To identify micro RNAs functioning in stress response of the black pepper plant, small RNA libraries were prepared from the leaf and root of Phytophthora capsici infected plants, leaves from drought stressed and control plants.
Project description:MiRNAs are a class of non-coding, small RNAs that play important roles in the regulation of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including eggplant (Solanum melongena L.). To identify miRNAs in eggplant and their response to Verticillium dahliae infection, a fungal pathogen for which effective cure methods and a clear understanding of its mechanisms are currently lacking, we deep-sequenced two small RNA (sRNA) libraries prepared from mocked and infected seedlings of eggplants. Specifically, 30,830,792 reads produced 7,716,328 unique small RNAs have been identified.
Project description:Belonging to the Carmovirus family, Turnip crinkle virus (TCV) is a positive-strand RNA virus that can infect Arabidopsis. Most Arabidopsis ecotypes are highly susceptible to TCV, except for the TCV resistant line Di-17 derived from ecotype Dijon. Previous studies showed that many of the stress related genes have changed significantly after TCV infection. Besides the virus-triggered genes, small RNAs also play critical roles in plant defense by triggering either transcriptional and/or post-transcriptional gene silencing. In this study, TCV-infected wildtype Arabidopsis thaliana and dcl1-9 mutant plants were subjected to transcriptome and small RNA analysis to investigate the role of DCL1 in virus defense network.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Triticum aestivum tissues (including leaves and spiklets infected with Fusarium and control). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study. Small RNA libraries were derived from leaves and spiklets control and Fusarium-infected of Triticum aestivum. Total RNA from leaves was isolated usingTriReagent (Molecular Research Center)and from spikelets using the Plant RNA Purification Reagent (Invitrogen), and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Yang Yen for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Plant small RNAs are a diverse and complex set of molecules, ranging in length from 21 to 24 nt, involved in a wide range of essential biological processes. Nowadays, high-throughput sequencing is the most commonly used method for the discovery and quantification of small RNAs. However, it is known that several biases can occur during the preparation of small RNA libraries, especially using low input RNA. We used two types of plant biological samples to evaluate the performance of seven commercially available methods for small RNA library construction, using different RNA input amounts. We show that when working with plant material, library construction methods have differing capabilities to capture small RNAs, and that different library construction methods provide better results when applied to the detection of microRNAs, phased small RNAs, or tRNA-derived fragments.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from different Lactuca sativa tissues (including leaves, flowers, and fungus-infected leaves). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Triticum aestivum tissues (including leaves and spiklets infected with Fusarium and control). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study.
Project description:Small RNAs comprise a group of non coding RNAs which play significant role in the genetic regulation of growth and development in plants. The most important members of this family are the small inhibiting RNAs (siRNAs) and microRNAs (miRNAs). They are processed by the DICER like proteins in plants and incorporated into the RNA induced silencing complex to silence the cognate mRNAs by sequence specific cleavage. High throughput sequencing strategies have enabled the identification of complete gamut of small RNA sequences present in a plant tissue at a particular point of time enabling the study of their biological significance in different plant tissues. The small RNA profile of each plant shows few plant conserved sequences, few species specific sequences and few novel RNA sequences characteristic of each cultivar. Here we have performed high throughput sequencing of small RNA population derived from leaves of an elite edible Indian cultivar of banana cv. Rasthali (‘Silk’ subgroup with AAB genotype) to identify the microRNAs and other important small RNAs being expressed in the leaves of banana cv Rasthali.
Project description:Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important regulatory roles in plant development, defense and abnormal disease symptom formation. Here, 547 known miRNAs, representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. Through a differential expression analysis, miRNAs responding to Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis. In total, 103 known miRNAs, representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with the mock-inoculated control. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.
Project description:Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important regulatory roles in plant development, defense and abnormal disease symptom formation. Here, 547 known miRNAs, representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. Through a differential expression analysis, miRNAs responding to Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis. In total, 103 known miRNAs, representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with the mock-inoculated control. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.