Project description:An adult female osprey (Pandion haliaetus) was found weak and unable to fly in Auburn, Alabama in August 2019. The bird was captured and submitted to the Southeastern Raptor Center of the Auburn University College of Veterinary Medicine for evaluation. On presentation, the bird was thin with a body condition score of approximately 1.5 out of 5. The bird died during the examination and was submitted for necropsy. At the necropsy, there was a severe loss of muscle mass over the body, and the keel was prominent. The liver and spleen were moderately enlarged with pale tan to red foci randomly scattered throughout the parenchyma. A histopathologic observation revealed multifocal to coalescing areas of necrosis and hemorrhage with intralesional protozoans in the liver, spleen, lungs, kidney, sciatic nerve, esophagus, cerebrum, heart, and proventriculus. Immunohistochemistry using anti-Toxoplasma gondii-specific antibodies showed a strong positive labeling of the parasite. Semi-nested PCR, specific for the B1 gene of T. gondii, successfully identified T. gondii. This is the first confirmed case of T. gondii infection in an osprey.
Project description:During the 1950s and 1970s the osprey (Pandion haliaetus) experienced a dramatic population crash and remains of conservation concern in several parts of the world. We isolated 37 microsatellite loci and assessed these in ospreys sampled in the UK and Norway (using mouth swabs/feathers). From 26 loci variable in four ospreys, we selected 13, combined these into two multiplex-PCR sets and included a sex-typing marker. Additional markers confirmed sexes. In 17 ospreys, feather-sampled in central Norway, we found 3-10 alleles per locus. The 13 loci are autosomal (heterozygotes were present in both sexes) and observed heterozygosities ranged from 0.24 to 0.94. The combined probability of identity for the 13 loci was 8.0 × 10-12. These microsatellite loci will be useful for genetic monitoring, parentage analysis and population genetic studies of the osprey.
Project description:Ospreys are renowned for their fishing abilities, which have largely been attributed to their specialized talon morphology and semi-zygodactyly-the ability to rotate the fourth toe to accompany the first toe in opposition of toes II and III. Anecdotal observations indicate that zygodactyly in Ospreys is associated with prey capture, although to our knowledge this has not been rigorously tested. As a first pass toward understanding the functional significance of semi-zygodactyly in Ospreys, we scoured the internet for images of Osprey feet in a variety of circumstances. From these we cross-tabulated the number of times each of three toe configurations (anisodactylous, zygodactylous, and an intermediate condition between these) was associated with different grasping scenarios (e.g., grasping prey or perched), contact conditions (e.g., fish, other objects, or substrate), object sizes (relative to foot size), and grasping behaviors (e.g., using one or both feet). Our analysis confirms an association between zygodactyly and grasping behavior; the odds that an osprey exhibited zygodactyly while grasping objects in flight were 5.7 times greater than whilst perched. Furthermore, the odds of zygodactyly during single-foot grasps were 4.1 times greater when pictured grasping fish compared to other objects. These results suggest a functional association between predatory behavior and zygodactyly and has implications for the selective role of predatory performance in the evolution of zygodactyly more generally.
Project description:modENCODE_submission_5986 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: L3 Larva; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage L3 Larva; temp (temperature) 20 degree celsius; Strain N2; Antibody NURF-1 SDQ3525 (target is NURF-1)