Project description:Background and aimsAdditional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system.MethodsField pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90?mg NO3(-)-N?kg(-1) under either ambient CO2 (aCO2; 390?ppm) or elevated CO2 (eCO2; 550?ppm) using free-air CO2 enrichment (SoilFACE).Key resultsUnder aCO2, field pea biomass was significantly lower at 5?mg NO3(-)-N?kg(-1) than at 90?mg NO3(-)-N?kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N?kg(-1) than in the 5?mg NO3(-)-N?kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant.ConclusionsElevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments.
Project description:To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].
Project description:Insufflation of the colon, usually with room air, is necessary to distend the lumen for exploration. Carbon dioxide (CO2) insufflation instead of room air insufflation (AI) has been shown to decrease symptoms of abdominal pain or discomfort during the procedure and particularly during the following 24 hours. CO2 is is rapidly absorbed by the intestinal mucosa and exhaled through respiration. AI colonoscopy has usually been the reference standard to compare colonoscopy using CO2 insufflation. In two recent articles AI was compared to either CO2 insufflation and Water-aided colonoscopy (WAC), which entails infusion of water to facilitate insertion to the cecum.
WAC can be categorized broadly in Water Immersion (WI) and Water Exchange (WE). In WI water is infused during the insertion phase of colonoscopy, with removal of infused water predominantly during withdrawal. Occasional use of insufflation may be allowed. WE entails complete exclusion of insufflation, removal of residual colonic air pockets and feces, and suction of infused water predominantly during insertion to minimize distention. During the withdrawal phase insufflation is used to distend the colonic lumen.
In the WAC arms of the two mentioned articles the insertion method used was WI, with infusion of water at room temperature or at 37°C. During withdrawal, air insufflation or either air or CO2 insufflation were employed.
Compared to AI, CO2 insufflation and WI (using room air insufflation or CO2 insufflation during withdrawal) were effective in both studies in decreasing sedation requirement, pain and tolerance scores, with patients’ higher willingness to repeat the procedure.
Until now no direct comparison has been made within a single study about pain score during colonoscopy using AI, CO2 insufflation, WI/CO2, WE/CO2, WI/AI and WE/AI.
In this study we test the hypothesis that, compared to AI, CO2 insufflation and WAC/CO2-AI methods will decrease pain score during colonoscopy, with reduction of sedation requirement, and that WE will achieve the best result. This comparative study has also the aim to test the respective peculiarities of each method.
Project description:Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria in converting solar energy and high concentrations of CO2 (e.g. flue gas from coal power plants) efficiently into biomass and renewable energy sources is of interest to many research fields. In order to guide further advances in this area, a better understanding about the metabolic changes that occur under conditions of high CO2 is important. The objective of this study is to utilize genome-wide microarray expression profiling in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air and to determined the impact of high CO2 on cyanobacterial cell physiology and growth.
Project description:To study long-term elevated CO2 and enriched N deposition interactive effects on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. There exist antagonistic CO2×N interactions on microbial functional genes associated with C, N, P S cycling processes. More strong antagonistic CO2×N interactions are observed on C degradation genes than other genes. Remarkably antagonistic CO2×N interactions on soil microbial communities could enhance soil C accumulation.
Project description:Background and aimsSoil acidity currently limits root growth and crop production in many regions, and climate change is leading to uncertainties regarding future food supply. However, it is unknown how elevated CO2 (eCO2) affects the performance of wheat crops in acid soils under field conditions. We investigated the effects of eCO2 on plant growth and yield of three pairs of near-isogenic hexaploid wheat lines differing in alleles of aluminium-resistant genes TaALMT1 (conferring root malate efflux) and TaMATE1B (conferring citrate efflux).MethodsPlants were grown until maturity in an acid soil under ambient CO2 (aCO2; 400 µmol mol-1) and eCO2 (550 µmol mol-1) in a soil free-air CO2 enrichment facility (SoilFACE). Growth parameters and grain yields were measured.Key resultsElevated CO2 increased grain yield of lines carrying TaMATE1B by 22 % and lines carrying only TaALMT1 by 31 %, but did not increase the grain yield of Al3+-sensitive lines. Although eCO2 promoted tiller formation, coarse root length and root biomass of lines carrying TaMATE1B, it did not affect ear number, and it therefore limited yield potential. By contrast, eCO2 decreased or did not change these parameters for lines carrying only TaALMT1, and enhanced biomass allocation to grains thereby resulting in increased grain yield. Despite TaMATE1B being less effective than TaALMT1 at conferring Al3+ resistance based on root growth, the gene promoted grain yield to a similar level to TaALMT1 when the plants were grown in acid soil. Furthermore, TaALMT1 and TaMATE1B were not additive in their effects.ConclusionsAs atmospheric CO2 increases, it is critical that both Al3+-resistance genes (particularly TaALMT1) should be maintained in hexaploid wheat germplasm in order for yield increases from CO2 fertilization to be realized in acid soils.
Project description:Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria in converting solar energy and high concentrations of CO2 (e.g. flue gas from coal power plants) efficiently into biomass and renewable energy sources is of interest to many research fields. In order to guide further advances in this area, a better understanding about the metabolic changes that occur under conditions of high CO2 is important. The objective of this study is to utilize genome-wide microarray expression profiling in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air and to determined the impact of high CO2 on cyanobacterial cell physiology and growth. Study of metabolic and cellular adaptations to high CO2 conditions in the unicellular diazotrophic cyanobacterium Cyanothece 51142. Two-condition experiment: 0.03% CO2 vs. 8% CO2. Biological replicates: 2; technical replicates: 3; Spots/ORF: 3 per Chip. Samples were collected at 7 time points over a period of two days, namely, Day1_30minLight (30min), Day1_2hrsLight (2hr), Day1_6hrsLight (6hr), Day1_1hrsDark (13hr), Day1-6hrsDark (18hr), Day2_6hrsLight (30hr) and Day2_6hrsDark (42hr).
Project description:Six weeks old Arabidopsis plants were transferred to a low CO2 (100 ppm) environment during 24 hours and compared to control plants kept under ambient CO2 conditions. Limited CO2 availability will cause higher rates of photorespiration and affect the plant redox homeostasis. We studied the transcriptomic impact of exposing plants to a lower CO2 environment to further eliculidate the signaling pathways during photorespiratory stress.
Project description:Challenges of climate change on the future grape and wine production are widely discussed in science and in the wine industry with the goal to maintain a consistent must and wine quality in the future. Therefore, the effect of elevated CO2 (eCO2)-as one of the relevant greenhouse gases jointly responsible for a changing climate-was investigated concerning the composition of must and wine made of two grapevine cultivars V. vinifera L. cvs. Riesling and Cabernet Sauvignon within the established VineyardFACE (Free-Air Carbon dioxide Enrichment) experiment. Must and wine analysis were conducted in three consecutive years (2014-2016) by analyzing standard must and wine parameters, e.g., total soluble solids (TSS), pH, total acidity (TA), organic acids (e.g., tartaric acid, malic acid, shikimic acid, citric acid, volatile acid and gluconic acid) or total phenolics (TP). Also, for both cultivars CIELab coordinates (L* for lightness, a* as green/red and b* as blue/yellow components) were used to test colour in young white and red wines. Additionally, total anthocyanins and monomeric indices were analyzed for young wines of the red cultivar Cabernet Sauvignon. With marginal differences between CO2 treatments, the composition of must and young wines was not found to be negatively influenced by an eCO2 concentration.