Project description:Glutathione (GSH) is a critical endogenous antioxidant that protects against intracellular oxidative stress. As such, pathological alterations in GSH levels are linked to a myriad of diseases including cancer, neurodegeneration and cataract. The rate limiting step in GSH biosynthesis is catalyzed by the glutamate cysteine ligase catalytic subunit (GCLC). The high expression of GCLC in the lens supports the synthesis of millimolar concentrations of GSH in this tissue. Herein, we describe the morphological consequences of deleting (knocking out) Gclc from surface ectoderm-derived ocular tissues (using the Le-Cre transgene; Gclc KO) which includes an overt microphthalmia phenotype and severely disrupted formation of multiple ocular structures (i.e., cornea, iris, lens, retina). Controlling for the Le-Cre transgene revealed that the deletion of Gclc significantly exacerbated the microphthalmia phenotype in Le-Cre hemizygous mice and resulted in dysregulated gene expression that was unique to only the lenses of KO mice. We further characterized the impaired lens development by conducting an RNA-seq experiment on KO and Gclc control (CON) mouse lens at the day of birth. RNA-sequencing revealed significant differences between Gclc knockout (KO) and Gclc control (CON) lenses, including down-regulation of crystallins and lens fiber cell identity genes, and up-regulation of lens epithelial cell identity genes. In addition, genes related to the immune system (e.g., immune system process, inflammatory response, neutrophil chemotaxis) were upregulated, and genes related to eye/lens development were downregulated. TRANSFAC analysis of differentially expressed genes (DEGs) in the lens of Gclc KO mice implicated PAX6 as a key upstream regulator of Gclc KO sensitive genes. This was further supported by a strong positive correlation between the transcriptomes of the lenses of Gclc KO and Pax6 KO mice. Strikingly, the dysregulation of PAX6-regulated genes in Gclc KO mice was observed despite no change in the ocular localization of PAX6 or decrease in the expression of PAX6 in the lens. In vitro experiments demonstrated that suppression of intracellular GSH concentrations resulted in impairment of PAX6 transactivation activity. Taken together, the present results elucidate a novel mechanism wherein intracellular GSH concentrations may modulate PAX6 activity.
Project description:The paired box gene 6 (PAX6) is an essential transcription factor for eye formation. Genetic alterations in PAX6 can lead to various ocular malformations including aniridia. The purpose of this study was to identify genetic defects as the underlying cause of familial coloboma of iris in a large Chinese family. After linkage analysis was carried out in this family, all exons of PAX6 in the proband were sequenced by the Sanger sequencing technique. Then the genome of the proband was evaluated by a microarray-based comparative genomic hybridization (aCGH). Quantitative real-time PCR was applied to verify the abnormal aCGH findings. All patients presented bilateral partial coloboma of iris, severe congenital nystagmus, hyperpresbyopia and congenital posterior polar cataracts. Two-point linkage analysis in the autosomal dominant family showed loss of heterozygosity at the D11S914 locus. There was no pathogenic mutation in the exons of PAX6. The aCGH analysis revealed a 681 kb heterozygous deletion on chromosome 11p13. Quantitative real-time PCR verified the deletion in the patients and further confirmed this deletion cosegregation with the coloboma of iris phenotype in the family. The 681 kb large deletion of chromosome 11p13 downstream of PAX6 is the genetic cause of the familial coloboma of ocular in this large Chinese family. aCGH should be applied if there is a negative result for the mutation detection of PAX6 in patients with aniridia. One Case sample and one control sample
Project description:The paired box gene 6 (PAX6) is an essential transcription factor for eye formation. Genetic alterations in PAX6 can lead to various ocular malformations including aniridia. The purpose of this study was to identify genetic defects as the underlying cause of familial coloboma of iris in a large Chinese family. After linkage analysis was carried out in this family, all exons of PAX6 in the proband were sequenced by the Sanger sequencing technique. Then the genome of the proband was evaluated by a microarray-based comparative genomic hybridization (aCGH). Quantitative real-time PCR was applied to verify the abnormal aCGH findings. All patients presented bilateral partial coloboma of iris, severe congenital nystagmus, hyperpresbyopia and congenital posterior polar cataracts. Two-point linkage analysis in the autosomal dominant family showed loss of heterozygosity at the D11S914 locus. There was no pathogenic mutation in the exons of PAX6. The aCGH analysis revealed a 681 kb heterozygous deletion on chromosome 11p13. Quantitative real-time PCR verified the deletion in the patients and further confirmed this deletion cosegregation with the coloboma of iris phenotype in the family. The 681 kb large deletion of chromosome 11p13 downstream of PAX6 is the genetic cause of the familial coloboma of ocular in this large Chinese family. aCGH should be applied if there is a negative result for the mutation detection of PAX6 in patients with aniridia.
Project description:Pax6 is a transcription factor with key functional roles in embryonic development. In order to identify downstream effectors of Pax6 in the developing cerebral cortex we performed microarray analysis. We compared gene expression profiles of cortical tissues isolated from wild type and Pax6-/- mouse embryos. In order to identify Pax6 downstream targets we carried out microarray analysis of Pax6-/- mutant mice. Pax6 is highly expressed in the mouse cerebral cortex at embryonic day E14.5, therefore we selected this tissue in order to compare gene expression profiles between wild type and Pax6-/- homozygous cortici. RNA samples were isolated from three mutant and three wild type embryos.
Project description:Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome-wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate-conserved and central nervous system-expressed lncRNA transcribed from a locus upstream of the gene encoding the Pax6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neuronal differentiation. Paupar acts in a transcript-dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with Pax6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large-scale transcriptional programmes. N2A cells transfected with a non-targeting control vector were compared to N2A cells transfected with a Pax6 knockdown construct. Three biological replicates of each condition were analysed on Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.