Project description:Bile acids are not only crucial for the uptake of lipids, but also have widespread systematic ef-fects and shape the gut-microbiome composition. Bile acids can directly shape the gut-microbiome and can be modified by bacteria such as Eggerthella lenta which in turn plays a crucial role in host metabolism and immune response. We cultivated eight strains that represent a simplified human intestinal microbiome and inves-tigated the molecular response to bile acids, co-culturing with Eggerthella lenta and the combina-tion. We observed growth inhibition of particularly gram-positive strains during bile acid stress, which could be alleviated through co-culturing with Eggerthella lenta. The inhibition of growth was related to a decrease in membrane integrity and genotoxic effects of bile acids, which we investigated using zeta potential measurements in combination with proteomic and metabolomic analyses. Co-culturing with Eggerthella lenta alleviated stress through formation of oxidized and epimer-ized bile acids and the molecular response to co-culturing was seen to be strain specific. We also note that we could detect the recently described Microbial Bile Salt Conjugates in our cultures. This study highlights the significance of a potent bile acid modifier and how in-depth molecular analyses are required to decipher cross-communication between gut and host.