Project description:It is well established that the pathogenicity and pathology of rabies virus (RABV) varies according to the variant, but the exact mechanism for this is still not completely known. In this study, the gene expression profile in brains of mice infected with virus isolated from a human case of dog rabies (V2) or vampire bat-acquired rabies (V3) were analyzed in experimental condition. In total, 138 array probes associated with 120 genes were differentially expressed between mice inoculated with V2 and the control mice at day 10 post-inoculation. A single probe corresponding to an unannotated gene was identified in V3 versus control mice. Gene ontology (GO) analysis revealed that all of the genes up-regulated in mice inoculated with V2 were involved in the biological process of immune defense against pathogens. Although both variants being considered pathogenic, inoculation in exactly same condition generated particular results regarding gene expression, more likely to differences in pathogenesis between dog and bat-related variants, already considered in other studies. This study was the first to demonstrate the global gene expression in experimental rabies infection due to V3 wild-type rabies virus, which reservoir is the vampire bat Desmodus rotundus, an important transmitter of rabies for humans and production animals in Latin America.
Project description:Data from the VLA lyssavirus genotyping microarray. The array platform for this data is GEO accession GPL8066, and consists of 624 oligos representing two viral families. The data set itself consists of 14 arrays, 7 hybridised with RNA from mice brains infected with 7 genotypes of lyssaviruses, 1 hybridised with RNA from normal mouse brain, and 6 hybridised with RNA from coded samples consisting of infected mouse brains or control mouse brains. Keywords: Lyssavirus genotyping microarray
Project description:Data from the VLA lyssavirus genotyping microarray. The array platform for this data is GEO accession GPL8066, and consists of 624 oligos representing two viral families. The data set itself consists of 14 arrays, 7 hybridised with RNA from mice brains infected with 7 genotypes of lyssaviruses, 1 hybridised with RNA from normal mouse brain, and 6 hybridised with RNA from coded samples consisting of infected mouse brains or control mouse brains. Keywords: Lyssavirus genotyping microarray Data from the VLA lyssavirus genotyping microarray. The array platform for this data is GEO accession GPL8066, and consists of 624 oligos representing two viral families. The data set itself consists of 14 arrays, 7 hybridised with RNA from mice brains infected with 7 genotypes of lyssaviruses, 1 hybridised with RNA from normal mouse brain, and 6 hybridised with RNA from coded samples consisting of infected mouse brains or control mouse brains. Statistical analysis of the data was done with DetectiV software (Watson et al., 2007). The median and array methods of normalization were used in the statistical analysis of the results. In the median method, DetectiV software calculates the mean fluorescence for each set of probes and normalised against background fluorescence of all probes, assuming that most probes are not hybridized. The array method utilizes an entire control array, e.g. RNA from a known uninfected animal, as the negative control and all probe values are divided by their respective elements from the control array.
Project description:Rabies is an ancient infectious disease but still lacking efficient therapeutic approach despite of vaccine. In this study, we have identified a novel cytoplasmic lncRNA, namely rabies virus related lncRNA 1(RVRL1), whose expression in neuronal cells is up-regulated upon the infection of the causative agent of rabies, the neurotropic virus rabies virus (RABV). RVRL1 effectively inhibits RABV infection both in neuronal cells and in a mouse model. RVRL1 binds to EZH2 and disrupts the PRC2 complex, which is consistent with the inverse relationship between RVRL1 expression and the cellular H3K27me3 level. RVRL1 expression positively regulates the expression of PCP4L1 encoding a 10 kD peptide, which is shown to inhibit RABV replication. These findings highlight a novel mechanism for lncRNAs to upregulate the expression of antiviral genes, and define two potential anti-rabies reagents including an antiviral lncRNA and an antiviral peptide.