Project description:Four hybrid yeast strains isolated from a variety of industrial substrates were hybridized to an array-CGH platform containing probes to query the whole genomes of seven different Saccharomyces species. For most of the strains we found evidence of multiple interspecific hybridization events and multiple introgressed regions. The strains queried were GSY205 (isolated from a cider fermentation), GSY505 (a contaminant from a lager beer fermentation), GSY2232 (a commercial wine yeast strain), and GSY312 (a commercial lager beer strain). Additionally, 3 different rare viable spores derived from laboratory-created interspecific S. cerevisiae-S. bayanus (aka S. uvarum) hybrids were queried, before and after evolution in chemostats, via S. cerevisiae-S. bayanus microarrays.
Project description:The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.
Project description:Chromatin Immunoprecipitation followed by high throughput sequencing to identify the location of Orc1, Orc2 and Orc4 genomic enrichment.
Project description:Recently, the academic interest in the yeast Torulaspora delbrueckii has increased notably due to its high resistance to several types of stress, including salt and osmotic imbalance. However, the molecular mechanisms underlying these unusual properties are poorly understood. In Saccharomyces cerevisiae, the high-salt response is mediated by calcineurin, a conserved Ca(2+)/calmodulin-modulated protein phosphatase that regulates the transcriptional factor Crz1p. Here, we cloned the T. delbrueckii TdCRZ1 gene, which encodes a putative zinc finger transcription factor homologue to Crz1p. Consistent with this, overexpression of TdCRZ1 enhanced the salt tolerance of S. cerevisiae wild-type cells and suppressed the sensitivity phenotype of cnb1Delta and crz1Delta mutants to monovalent and divalent cations. However, T. delbrueckii cells lacking TdCrz1p showed phenotypes distinct from those previously observed in S. cerevisiae crz1Delta mutants. Quite remarkably, Tdcrz1-null cells were insensitive to high Na(+) and were more Li(+) tolerant than wild-type cells. Clearly, TdCrz1p was not required for the salt-induced transcriptional activation of the TdENA1 gene, encoding a putative P-type ATPase homologue to the main S. cerevisiae Na(+) pump ENA1. Furthermore, T. delbrueckii cells were insensitive to the immunosuppressive agents FK506 and cyclosporine A, both in the presence and in the absence of NaCl. Signaling through the calcineurin/Crz1 pathway appeared to be essential only on high-Ca(2+)/Mn(2+) media. Hence, T. delbrueckii and S. cerevisiae differ in the regulatory circuits and mechanisms that drive the adaptive response to salt stress.
Project description:Comparison between two commercial wine yeast strains (UCD522 and P29) differing in their production of H2S during wine fermentation.
Project description:The yeast Dekkera bruxellensis is as ethanol tolerant as Saccharomyces cerevisiae and may be found in bottled wine. It causes the spoilage of wine, beer, cider and soft drinks. In wines, the metabolic products responsible for spoilage by Dekkera bruxellensis are mainly volatile phenols. These chemical compounds are responsible for the taints described as ‘‘medicinal’’ in white wines (due to vinyl phenols) and as ‘‘leather’’, ‘‘horse sweat’’ and ‘‘stable’’ in red wines (due to ethyl phenols mainly 4-ethylphenol). Apart from the negative aroma nuances imparted by these yeasts, positive aromas such as ‘smoky’, ‘spicy’ and ‘toffee’ are also cited. Our goal was to identify the impact that the wine spoilage yeast Dekkera bruxellensis has on fermenting S. cerevisiae cells, especially on its gene expression level. To this end we co-inoculated both yeast species at the start of fermentation in a synthetic wine must, using S. cerevisiae-only fermentations without Dekkera bruxellensis as a control. All fermentations were employed in special membrane reactors (1.2 um pore size cut-off) physically separating Dekkera bruxellensis from wine yeast S. cerevisiae. Biomass separation with this membrane was done to abolish the possibility of hybridizing also D. bruxellensis probes on Agilent V2 (8x15K format) G4813 DNA microarrays designed just for S. cerevisiae ORF targets. The 1.2 um pore membrane separating both yeasts allowed the exchange of ethanol, metabolites and sugars during the fermentation.
Project description:Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome.