Project description:Two-component systems (TCS) are often used by bacteria to rapidly assess and respond to environmental changes. ChvG/ChvI (ChvGI) is a TCS conserved in γ-proteobacteria and is known for regulating expression of genes related to exopolysaccharide production, virulence and growth. The sensor kinase ChvG autophosphorylates upon yet unknown signals and phosphorylates the response regulator ChvI to activate transcription. Recent studies in Caulobacter crescentus showed that chv mutants are sensitive to vancomycin treatment and fail to grow in synthetic minimal media. In this work, we identified the osmotic imbalance as the main cause of growth impairment in synthetic minimal media. We also determined the ChvI regulon and confirmed that ChvI regulates cell envelope architecture at different levels by controlling outer membrane, peptidoglycan assembly/recycling and inner membrane proteins. Furthermore, we identified genes with osmoregulatory properties and confirmed that osmotic upshift is a signal triggering ChvG-dependent phosphorylation of ChvI. In addition, we challenged chv mutants with other cell envelope related stress and found that targeting with antibiotics the transpeptidation of peptidoglycan during cell elongation impairs growth of the mutant. Moreover, these antibiotics activate expression of the chvIG-hprK operon in ChvI-dependent and independent ways. ChvI phosphorylation is also shown to be activated upon antibiotic treatment with vancomycin. Finally, we observed that the sensor kinase ChvG fused to a fluorescent protein relocates from a patchy-spotty distribution to distinctive foci after transition from complex to synthetic minimal media. Interestingly, this pattern of (re)location has been described for proteins involved in cell growth control and peptidoglycan synthesis upon osmotic shock. Overall, our data support that the ChvGI TCS is mainly used to monitor and respond to osmotic imbalances and damages in the peptidoglycan layer.
Project description:Two-component systems (TCS) are often used by bacteria to rapidly assess and respond to environmental changes. ChvG/ChvI (ChvGI) is a TCS conserved in γ-proteobacteria and is known for regulating expression of genes related to exopolysaccharide production, virulence and growth. The sensor kinase ChvG autophosphorylates upon yet unknown signals and phosphorylates the response regulator ChvI to activate transcription. Recent studies in Caulobacter crescentus showed that chv mutants are sensitive to vancomycin treatment and fail to grow in synthetic minimal media. In this work, we identified the osmotic imbalance as the main cause of growth impairment in synthetic minimal media. We also determined the ChvI regulon and confirmed that ChvI regulates cell envelope architecture at different levels by controlling outer membrane, peptidoglycan assembly/recycling and inner membrane proteins. Furthermore, we identified genes with osmoregulatory properties and confirmed that osmotic upshift is a signal triggering ChvG-dependent phosphorylation of ChvI. In addition, we challenged chv mutants with other cell envelope related stress and found that targeting with antibiotics the transpeptidation of peptidoglycan during cell elongation impairs growth of the mutant. Moreover, these antibiotics activate expression of the chvIG-hprK operon in ChvI-dependent and independent ways. ChvI phosphorylation is also shown to be activated upon antibiotic treatment with vancomycin. Finally, we observed that the sensor kinase ChvG fused to a fluorescent protein relocates from a patchy-spotty distribution to distinctive foci after transition from complex to synthetic minimal media. Interestingly, this pattern of (re)location has been described for proteins involved in cell growth control and peptidoglycan synthesis upon osmotic shock. Overall, our data support that the ChvGI TCS is mainly used to monitor and respond to osmotic imbalances and damages in the peptidoglycan layer.
Project description:The role of the S. cerevisiae Yap4 transcription factor in the response to hyperosmolarity was investigated in two ways. Firstly, to assess the overall response of the yap4 deleted strain genome wide analysis upon a mild upshift in osmolarity was compared to the same response in the wt strain. Secondly, in order to identify genes whose osmo-expression is differentially regulated in the mutant strain (ie potential Yap4 target genes) the relative abundance of cDNAs of the wt and yap4 mutant strain obtained upon an osmotic upshift were directly compared by microarray analysis. Keywords: Mutant Stress Response
Project description:Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here we describe the regulation of potassium uptake systems in the oligotrophic alpha-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low affinity Kup and the high affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.
Project description:Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Nevertheless, K+ homeostasis remains poorly studied in bacteria. Here we describe the regulation of potassium uptake systems in the oligotrophic -proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by essentially using two K+ transporters to maintain potassium homeostasis, the low affinity Kup and the high affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by improving the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABC expression, suggest that the inner membrane sensor regulatory component KdpD works as a kinase in early stages of growth and as a phosphatase to regulate transition into stationary phase. Our data also show that KdpE is not only phosphorylated by KdpD but also by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome and identified the direct targets of KdpE. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.
Project description:Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Nevertheless, K+ homeostasis remains poorly studied in bacteria. Here we describe the regulation of potassium uptake systems in the oligotrophic -proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by essentially using two K+ transporters to maintain potassium homeostasis, the low affinity Kup and the high affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by improving the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABC expression, suggest that the inner membrane sensor regulatory component KdpD works as a kinase in early stages of growth and as a phosphatase to regulate transition into stationary phase. Our data also show that KdpE is not only phosphorylated by KdpD but also by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome and identified the direct targets of KdpE. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.