Project description:Modern 21st century toxicity testing makes use of omics technologies to address critical questions in toxicology and chemical management. Of interest are questions relating to chemical mechanisms of toxicity, differences in species sensitivity, and translation of molecular effects to observable apical endpoints. Our study addressed these questions by comparing apical outcomes and multiple omics responses in early-life stage exposure studies with Japanese quail (JQ; Coturnix japonica) and double crested cormorant (DCCO; Phalacrocorax auritus), representing a model and ecological species, respectively. Specifically, we investigated the dose-dependent response of apical outcomes, transcriptomics, and metabolomics in the liver in each species exposed to chlorpyrifos (CPF), a widely used organophosphate pesticide. Our results revealed a clear pattern of dose-dependent disruption of gene expression and metabolic profiles in JQ but not DCCO at similar CPF exposure concentrations. The difference in effect sensitivity between species was likely due to higher metabolic transformation of CPF in the precocial JQ compared to the more altricial DCCO. The most impacted biological pathways after CPF exposure in JQ included hepatic metabolism, oxidative stress, endocrine disruption (steroid and non-steroid hormones), and metabolic disease (lipid and fatty acid metabolism). Importantly, we show consistent responses across biological scales, suggesting that significant disruption at the level of gene expression and metabolite profiles leads to observable apical responses at the organism level. Our study demonstrates the utility of evaluating effects at multiple biological levels of organization to understand how modern toxicity testing relates to outomes of regulatory relevance, while also highlighting important, yet poorly understood, species differences in sensitivity to chemical exposure.
Project description:modENCODE_submission_5986 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: L3 Larva; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage L3 Larva; temp (temperature) 20 degree celsius; Strain N2; Antibody NURF-1 SDQ3525 (target is NURF-1)
Project description:Trithorax group (TrxG) proteins counteract Polycomb silencing by an as yet uncharacterized mechanism. A well-known member of the TrxG is the histone methyltransferase Absent, Small, or Homeotic discs 1 (ASH1). In Drosophila ASH1 is needed for the maintenance of Hox gene expression throughout development, which is tightly coupled to preservation of cell identity. In order to understand the molecular function of ASH1 in this process, we performed affinity purification of tandem-tagged ASH1 followed by mass spectrometry (AP-MS) and identified FSH, another member of the TrxG as interaction partner. Here we provide genome-wide chromatin maps of both proteins based on ChIP-seq. Our Dataset comprises of 4 ChIP-seq samples using chromatin from S2 cells which was immunoprecipitated, using antibodies against Ash1, FSH-L and FSH-SL.
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of cotyledon stage seeds, the seed coat, embryonic cotyledons, and embryonic axis, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of soybean cotyledon stage seeds: seed coat (COT-SC), embryonic cotyledons (COT-COT), and embryonic axis (COT-AX).
Project description:H3K36me3 ChIP-seq on embryonic 15.5 day mouse neural tube For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf https://www.encodeproject.org/ENCSR207UMX/