Project description:Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA.
Project description:Hourly time course samples for the no yeast (NY) treatment group. Note that the samples at hours 4 and 8 do not have microarray data due to insufficient RNA yield. Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Microarray data was normalized by DNA-Chip Analyzer (dChip, http://www.dchip.org), which utilizes an invariant difference selection (IDS) algorithm to construct a normalization relation. Keywords = insulin, diet, nutrition Keywords: time-course
Project description:Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Change-point Analysis Results Table: Results of running change-point analysis on dChip normalized data. Normalized data was transformed into yeast (Y):no yeast (NY) signal ratios, and change-point analysis was performed by GeneTrace on these ratios (see publication for more information on change-point analysis). Raw Data, Not Normalized Table: Raw data (not normalized). Image files were analyzed by Affymetrix Microarray Suite (MAS) 5.0 with no normalization and no scaling. Signal abundance measurements, present [P], marginal [M], or absent [A] calls, and detection p-values reported were all produced by MAS 5.0. Note that there is no data for no yeast (NY) treatment samples at hours 4 and 8 due to insufficient RNA yield. Keywords = insulin, diet, nutrition Keywords: other
Project description:Hourly time course samples for the yeast (Y) treatment group. Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Microarray data was normalized by DNA-Chip Analyzer (dChip, http://www.dchip.org), which utilizes an invariant difference selection (IDS) algorithm to construct a normalization relation. Keywords = insulin, diet, nutrition Keywords: time-course
Project description:Baseline replicates at start of time-course. Flies in these samples were killed just prior to the start of both yeast (Y) and no yeast (NY) treatments (see below), i.e. at hour 0. The four samples were temporally ordered as described for change-point analysis. Larvae were reared on standard diet until early third instar, at which time they were washed and transferred to standard diet lacking yeast. The animals remained on this diet until four days after emergence, when one group of adults was switched back to standard diet containing yeast (group Y) while another remained on the diet lacking yeast (group NY). Flies from both groups were killed every hour for the next twelve hours, creating 24 samples across the two treatments. In addition, four samples of flies were killed just before the start of the time course and used as baseline replicates for the no yeast (NY) and yeast (Y) treatments. Baseline replicates were temporally ordered as noted for change-point analysis. No yeast (NY) treatment samples at hours four and eight did not yield microarray data due to insufficient RNA. Total RNA was extracted from whole animals using Trizol (Invitrogen). Sample processing and microarray hybridization/scanning were performed at the Brown University Center for Genetics and Genomics according to Affymetrix protocol. Microarray data was normalized by DNA-Chip Analyzer (dChip, http://www.dchip.org), which utilizes an invariant difference selection (IDS) algorithm to construct a normalization relation. Keywords = insulin, diet, nutrition Keywords: ordered
Project description:Time course analysis series in Development of the transcriptome from Drosophila melanogaster using the Heidelberg FlyArray. All stages were hybridized against embryonic stage 0-4 h as reference control. Keywords: time-course