Project description:UNLABELLED:A monographic revision of the hyphomycete genus Cladosporium s. lat. (Cladosporiaceae, Capnodiales) is presented. It includes a detailed historic overview of Cladosporium and allied genera, with notes on their phylogeny, systematics and ecology. True species of Cladosporium s. str. (anamorphs of Davidiella), are characterised by having coronate conidiogenous loci and conidial hila, i.e., with a convex central dome surrounded by a raised periclinal rim. Recognised species are treated and illustrated with line drawings and photomicrographs (light as well as scanning electron microscopy). Species known from culture are described in vivo as well as in vitro on standardised media and under controlled conditions. Details on host range/substrates and the geographic distribution are given based on published accounts, and a re-examination of numerous herbarium specimens. Various keys are provided to support the identification of Cladosporium species in vivo and in vitro. Morphological datasets are supplemented by DNA barcodes (nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-? gene sequences) diagnostic for individual species. In total 993 names assigned to Cladosporium s. lat., including Heterosporium (854 in Cladosporium and 139 in Heterosporium), are treated, of which 169 are recognized in Cladosporium s. str. The other taxa are doubtful, insufficiently known or have been excluded from Cladosporium in its current circumscription and re-allocated to other genera by the authors of this monograph or previous authors. TAXONOMIC NOVELTIES:Cladosporium allicinum (Fr.: Fr.) Bensch, U. Braun & Crous, comb. nov., C. astroideum var. catalinense U. Braun, var. nov., Fusicladium tectonicola (Yong H. He & Z.Y. Zhang) U. Braun & Bensch, comb. nov., Septoidium uleanum (Henn.) U. Braun, comb. nov., Zasmidium adeniae (Hansf.) U. Braun, comb. nov., Zasmidium dianellae (Sawada & Katsuki) U. Braun, comb. nov., Zasmidium lythri (Westend.) U. Braun & H.D. Shin, comb. nov., Zasmidium wikstroemiae (Petch) U. Braun, comb. nov.
Project description:As part of a worldwide survey of the indoor mycobiota about 520 new Cladosporium isolates from indoor environments mainly collected in China, Europe, New Zealand, North America and South Africa were investigated by using a polyphasic approach to determine their species identity. All Cladosporium species occurring in indoor environments are fully described and illustrated. Fourty-six Cladosporium species are treated of which 16 species are introduced as new. A key for the most common Cladosporium species isolated from indoor environments is provided. Cladosporium halotolerans proved to be the most frequently isolated Cladosporium species indoors.
Project description:Indoor fungi are a major cause of cosmetic and structural damage of buildings worldwide and prolonged exposure of these fungi poses a health risk. Aspergillus, Penicillium and Cladosporium species are the most predominant fungi in indoor environments. Cladosporium species predominate under ambient conditions. A total of 123 Cladosporium isolates originating from indoor air and indoor surfaces of archives, industrial factories, laboratories, and other buildings from four continents were identified by sequencing the internal transcribed spacer (ITS), and a part of the translation elongation factor 1? gene (TEF) and actin gene (ACT). Species from the Cladosporium sphaerospermum species complex were most predominant representing 44.7% of all isolates, while the Cladosporium cladosporioides and Cladosporium herbarum species complexes represented 33.3% and 22.0%, respectively. The contribution of the C. sphaerospermum species complex was 23.1% and 58.2% in the indoor air and isolates from indoor surfaces, respectively. Isolates from this species complex showed growth at lower water activity (? 0.82) when compared to species from the C. cladosporioides and C. herbarum species complexes (? 0.85). Together, these data indicate that xerotolerance provide the C. sphaerospermum species complex advantage in colonizing indoor surfaces. As a consequence, C. sphaerospermum are proposed to be the most predominant fungus at these locations under ambient conditions. Findings are discussed in relation to the specificity of allergy test, as the current species of Cladosporium used to develop these tests are not the predominant indoor species.
Project description:A morphologically distinct isolate of Cladosporium sphaerospermum from a North American patent collection, referenced as Cladosporium lignicola in the patent, was examined. Generic affinity was confirmed by scanning electron microscopic examination of conidiogenous loci and conidial hila. Species identity as C. sphaerospermum was indicated by DNA sequence data derived from actin and translation elongation factor 1-alpha genes, and the internal transcribed spacer region. The isolate broadens the morphological limits of C. sphaerospermum by production of obclavate, occasionally transversely septate conidia with subrostrate conidiogenous apices ('alternarioid' conidia), and by production of conidia larger than those in prior standard descriptions. Type material of C. lignicola was re-examined and compared with the North American fungus, from which it is morphologically distinct. The decision to reduce C. lignicola to synonymy under C. herbarum was confirmed.
Project description:The Cladosporium herbarum complex comprises five species for which Davidiella teleomorphs are known. Cladosporium herbarum s. str. (D. tassiana), C. macrocarpum (D. macrocarpa) and C. bruhnei (D. allicina) are distinguishable by having conidia of different width, and by teleomorph characters. Davidiella variabile is introduced as teleomorph of C. variabile, a homothallic species occurring on Spinacia, and D. macrospora is known to be the teleomorph of C. iridis on Iris spp. The C. herbarum complex combines low molecular distance with a high degree of clonal or inbreeding diversity. Entities differ from each other by multilocus sequence data and by phenetic differences, and thus can be interpreted to represent individual taxa. Isolates of the C. herbarum complex that were formerly associated with opportunistic human infections, cluster with C. bruhnei. Several species are newly described from hypersaline water, namely C. ramotenellum, C. tenellum, C. subinflatum, and C. herbaroides. Cladosporium pseudiridis collected from Iris sp. in New Zealand, is also a member of this species complex and shown to be distinct from C. iridis that occurs on this host elsewhere in the world. A further new species from New Zealand is C. sinuosum on Fuchsia excorticata. Cladosporium antarcticum is newly described from a lichen, Caloplaca regalis, collected in Antarctica, and C. subtilissimum from grape berries in the U.S.A., while the new combination C. ossifragi, the oldest valid name of the Cladosporium known from Narthecium in Europe, is proposed. Standard protocols and media are herewith proposed to facilitate future morphological examination of Cladosporium spp. in culture, and neotypes or epitypes are proposed for all species treated.
Project description:The genus Cladosporium is restricted to dematiaceous hyphomycetes with a coronate scar type, and Davidiella teleomorphs. In the present study numerous cladosporium-like taxa are treated, and allocated to different genera based on their morphology and DNA phylogeny derived from the LSU nrRNA gene. Several species are introduced in new genera such as Hyalodendriella, Ochrocladosporium, Rachicladosporium, Rhizocladosporium, Toxicocladosporium and Verrucocladosporium. A further new taxon is described in Devriesia (Teratosphaeriaceae). Furthermore, Cladosporium castellanii, the etiological agent of tinea nigra in humans, is confirmed as synonym of Stenella araguata, while the type species of Stenella is shown to be linked to the Teratosphaeriaceae (Capnodiales), and not the Mycosphaerellaceae as formerly presumed.